000911496 001__ 911496
000911496 005__ 20240116084314.0
000911496 0247_ $$2doi$$a10.1016/j.biopsych.2022.09.014
000911496 0247_ $$2ISSN$$a0006-3223
000911496 0247_ $$2ISSN$$a1873-2402
000911496 0247_ $$2Handle$$a2128/33836
000911496 0247_ $$2pmid$$a36567226
000911496 0247_ $$2WOS$$aWOS:000927447100001
000911496 037__ $$aFZJ-2022-04758
000911496 082__ $$a610
000911496 1001_ $$0P:(DE-Juel1)158043$$aZachlod, Daniel$$b0$$eCorresponding author
000911496 245__ $$aMapping cyto- and receptor architectonics to understand brain function and connectivity
000911496 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000911496 3367_ $$2DRIVER$$aarticle
000911496 3367_ $$2DataCite$$aOutput Types/Journal article
000911496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705312783_8312
000911496 3367_ $$2BibTeX$$aARTICLE
000911496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911496 3367_ $$00$$2EndNote$$aJournal Article
000911496 520__ $$aThis review focuses on cytoarchitectonics and receptor architectonics as biological correlates of function and connectivity. It introduces the 3-dimensional cytoarchitectonic probabilistic maps of cortical areas and nuclei of the Julich-Brain Atlas, available at EBRAINS, to study structure-function relationships. The maps are linked to the BigBrain as microanatomical reference model and template space. The siibra software tool suite enables programmatic access to the maps and to receptor architectonic data that are anchored to brain areas. Such cellular and molecular data are tools for studying magnetic resonance connectivity including modeling and simulation. At the end, we highlight perspectives of the Julich-Brain as well as methodological considerations. Thus, microstructural maps as part of a multimodal atlas help elucidate the biological correlates of large-scale networks and brain function with a high level of anatomical detail, which provides a basis to study brains of patients with psychiatric disorders.
000911496 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000911496 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000911496 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
000911496 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x3
000911496 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911496 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b1$$ufzj
000911496 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b2$$ufzj
000911496 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b3$$ufzj
000911496 773__ $$0PERI:(DE-600)1499907-9$$a10.1016/j.biopsych.2022.09.014$$gp. S0006322322015955$$n5$$p471-479$$tBiological psychiatry$$v93$$x0006-3223$$y2023
000911496 8564_ $$uhttps://juser.fz-juelich.de/record/911496/files/1-s2.0-S0006322322015955-main.pdf$$yOpenAccess
000911496 8767_ $$d2023-05-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000911496 909CO $$ooai:juser.fz-juelich.de:911496$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158043$$aForschungszentrum Jülich$$b0$$kFZJ
000911496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b1$$kFZJ
000911496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b2$$kFZJ
000911496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b3$$kFZJ
000911496 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000911496 9141_ $$y2022
000911496 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911496 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911496 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000911496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000911496 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000911496 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911496 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
000911496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL PSYCHIAT : 2022$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
000911496 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBIOL PSYCHIAT : 2022$$d2023-08-25
000911496 920__ $$lyes
000911496 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000911496 980__ $$ajournal
000911496 980__ $$aVDB
000911496 980__ $$aI:(DE-Juel1)INM-1-20090406
000911496 980__ $$aAPC
000911496 980__ $$aUNRESTRICTED
000911496 9801_ $$aAPC
000911496 9801_ $$aFullTexts