000911501 001__ 911501
000911501 005__ 20240709082059.0
000911501 037__ $$aFZJ-2022-04763
000911501 041__ $$aEnglish
000911501 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$eCorresponding author$$ufzj
000911501 1112_ $$a43rd FGMR Annual Discussion Meeting$$cKarlsruhe$$d2022-09-12 - 2022-09-15$$gFGMR 2022$$wGermany
000911501 245__ $$aEPR spectroscopic investigation of Lithium-organic batteries
000911501 260__ $$c2022
000911501 3367_ $$033$$2EndNote$$aConference Paper
000911501 3367_ $$2DataCite$$aOther
000911501 3367_ $$2BibTeX$$aINPROCEEDINGS
000911501 3367_ $$2DRIVER$$aconferenceObject
000911501 3367_ $$2ORCID$$aLECTURE_SPEECH
000911501 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1669111848_16489$$xAfter Call
000911501 502__ $$cKIT - Karlsruher Institut für Technologie
000911501 520__ $$aElectrochemical energy storage is of key importance to meet future energy demands sustainably. The most used battery technology utilizes lithium metal as the anode and transition metal oxides or phosphates (LiCoO2, LiFePO4 etc.) as cathode material. Owing to the toxicity of the metals, production costs and poor recyclability, transition metal oxides as cathode materials have a negative environmental impact. Organic radical polymers are a promising alternative, as they feature tuneable redox properties, fast kinetics and are more environmentally sustainable.[1]EPR is well suited to study these systems as the polymers comprise of paramagnetic species as redox units. A common radical polymer, bearing TEMPO radicals as redox units is PTMA (poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate)).[2] Herein, we report EPR spectroscopic characterization of PTMA polymers using cw-EPR and pulsed-EPR techniques and study charge/discharge characteristics of a Li-PTMA cell using in operando EPR spectroscopy. Cw-EPR is primarily used for radical quantification and to distinguish between nitroxide radicals undergoing exchange and isolated nitroxides by lineshape fitting. Laplace inverted pulsed-EPR relaxation offers insight into electronic contact between the active material (PTMA) and SuperP conductive carbon present in the composite cathode. The redox state of the active material was monitored by acquiring cw-EPR spectra during battery cycling using an in operando EPR cell [3] with lithium metal as the anode and a PTMA composite cathode(65 wt% PTMA, 30 wt% SuperP, 5 wt% CMC(Carboxymethyl cellulose)). The Li-PTMA in operando cell shows good electrochemical reversibility of the active material for over60 cycles and an irreversible accumulation of mossy (microstructured) lithium is indicated by the linewidth of the lithium resonance. In the electrochemically oxidized state of the radical polymer, EPR spectrum shows the presence of immobilised nitroxide radicals arising from electrochemically inactive regions of the cathode film. EPR serves as an optimal spectroscopic technique for gaining insights into structural and mechanistic features of organic radical batteries (ORB). Comparative studies using pulsed-EPR techniques on pristine and post-cycled battery materials would also reveal degradation pathways and changes in the radical environment, further aiding the optimization of the ORB setup. Literature:[1] Muench, S. et al. Chem. Rev. 116, 9438–9484 (2016). [2] Nakahara, K. et al. Chem.Phys. Lett. 359, 351–354 (2002). [3] Niemöller, A. et al. J. Chem. Phys. 148, 014705(2018).
000911501 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000911501 536__ $$0G:(GEPRIS)441255373$$aInsight into doping mechanisms of polymer electrolyte / redox-active organic radical polymer lamellar composites (441255373)$$c441255373$$x1
000911501 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000911501 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000911501 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000911501 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000911501 7001_ $$0P:(DE-Juel1)179011$$aSzczuka, Conrad$$b1$$ufzj
000911501 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
000911501 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b3$$ufzj
000911501 909CO $$ooai:juser.fz-juelich.de:911501$$pVDB
000911501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
000911501 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185897$$aRWTH Aachen$$b0$$kRWTH
000911501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179011$$aForschungszentrum Jülich$$b1$$kFZJ
000911501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000911501 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
000911501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b3$$kFZJ
000911501 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b3$$kRWTH
000911501 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000911501 9141_ $$y2022
000911501 920__ $$lyes
000911501 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000911501 980__ $$aconf
000911501 980__ $$aVDB
000911501 980__ $$aI:(DE-Juel1)IEK-9-20110218
000911501 980__ $$aUNRESTRICTED
000911501 981__ $$aI:(DE-Juel1)IET-1-20110218