000911502 001__ 911502
000911502 005__ 20231116095327.0
000911502 0247_ $$2doi$$a10.1038/s43856-022-00191-8
000911502 0247_ $$2Handle$$a2128/32686
000911502 0247_ $$2pmid$$a36352249
000911502 0247_ $$2WOS$$aWOS:001088306700001
000911502 037__ $$aFZJ-2022-04764
000911502 1001_ $$00000-0002-3777-1410$$aBracher, Johannes$$b0$$eCorresponding author
000911502 245__ $$aNational and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021
000911502 260__ $$a[London]$$bSpringer Nature$$c2022
000911502 3367_ $$2DRIVER$$aarticle
000911502 3367_ $$2DataCite$$aOutput Types/Journal article
000911502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669038469_14265
000911502 3367_ $$2BibTeX$$aARTICLE
000911502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911502 3367_ $$00$$2EndNote$$aJournal Article
000911502 520__ $$aWe compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.
000911502 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000911502 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911502 7001_ $$00000-0003-0318-3669$$aWolffram, Daniel$$b1
000911502 7001_ $$00000-0001-7070-2241$$aDeuschel, Jannik$$b2
000911502 7001_ $$00000-0002-7223-6085$$aGörgen, Konstantin$$b3
000911502 7001_ $$00000-0002-1192-7165$$aKetterer, Jakob L.$$b4
000911502 7001_ $$00000-0002-4894-6124$$aUllrich, Alexander$$b5
000911502 7001_ $$0P:(DE-HGF)0$$aAbbott, Sam$$b6
000911502 7001_ $$00000-0001-8788-1709$$aBarbarossa, Maria V.$$b7
000911502 7001_ $$0P:(DE-HGF)0$$aBertsimas, Dimitris$$b8
000911502 7001_ $$00000-0001-6525-101X$$aBhatia, Sangeeta$$b9
000911502 7001_ $$00000-0001-6390-0338$$aBodych, Marcin$$b10
000911502 7001_ $$00000-0002-7750-5280$$aBosse, Nikos I.$$b11
000911502 7001_ $$00000-0002-5771-6179$$aBurgard, Jan Pablo$$b12
000911502 7001_ $$00000-0002-9778-570X$$aCastro, Lauren$$b13
000911502 7001_ $$00000-0001-5500-8120$$aFairchild, Geoffrey$$b14
000911502 7001_ $$0P:(DE-HGF)0$$aFiedler, Jochen$$b15
000911502 7001_ $$0P:(DE-HGF)0$$aFuhrmann, Jan$$b16
000911502 7001_ $$00000-0002-2842-3406$$aFunk, Sebastian$$b17
000911502 7001_ $$00000-0003-3476-3017$$aGambin, Anna$$b18
000911502 7001_ $$00000-0001-5523-5198$$aGogolewski, Krzysztof$$b19
000911502 7001_ $$00000-0002-3371-4072$$aHeyder, Stefan$$b20
000911502 7001_ $$0P:(DE-HGF)0$$aHotz, Thomas$$b21
000911502 7001_ $$0P:(DE-HGF)0$$aKheifetz, Yuri$$b22
000911502 7001_ $$0P:(DE-HGF)0$$aKirsten, Holger$$b23
000911502 7001_ $$0P:(DE-HGF)0$$aKrueger, Tyll$$b24
000911502 7001_ $$00000-0002-5313-3451$$aKrymova, Ekaterina$$b25
000911502 7001_ $$00000-0001-5812-707X$$aLeithäuser, Neele$$b26
000911502 7001_ $$00000-0002-2456-4834$$aLi, Michael L.$$b27
000911502 7001_ $$0P:(DE-Juel1)132189$$aMeinke, Jan H.$$b28
000911502 7001_ $$0P:(DE-HGF)0$$aMiasojedow, Błażej$$b29
000911502 7001_ $$00000-0003-3349-0467$$aMichaud, Isaac J.$$b30
000911502 7001_ $$00000-0002-2473-5947$$aMohring, Jan$$b31
000911502 7001_ $$0P:(DE-HGF)0$$aNouvellet, Pierre$$b32
000911502 7001_ $$00000-0002-9627-3008$$aNowosielski, Jedrzej M.$$b33
000911502 7001_ $$0P:(DE-HGF)0$$aOzanski, Tomasz$$b34
000911502 7001_ $$0P:(DE-HGF)0$$aRadwan, Maciej$$b35
000911502 7001_ $$0P:(DE-HGF)0$$aRakowski, Franciszek$$b36
000911502 7001_ $$0P:(DE-HGF)0$$aScholz, Markus$$b37
000911502 7001_ $$00000-0002-8898-5726$$aSoni, Saksham$$b38
000911502 7001_ $$00000-0002-8706-5717$$aSrivastava, Ajitesh$$b39
000911502 7001_ $$0P:(DE-HGF)0$$aGneiting, Tilmann$$b40
000911502 7001_ $$00000-0001-6000-5653$$aSchienle, Melanie$$b41$$eCorresponding author
000911502 773__ $$0PERI:(DE-600)3096949-9$$a10.1038/s43856-022-00191-8$$gVol. 2, no. 1, p. 136$$n1$$p136$$tCommunications medicine$$v2$$x2730-664X$$y2022
000911502 8564_ $$uhttps://juser.fz-juelich.de/record/911502/files/Bracher%20et%20al.%20-%202022%20-%20National%20and%20subnational%20short-term%20forecasting%20of.pdf$$yOpenAccess
000911502 909CO $$ooai:juser.fz-juelich.de:911502$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132189$$aForschungszentrum Jülich$$b28$$kFZJ
000911502 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000911502 9141_ $$y2022
000911502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911502 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000911502 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:58:57Z
000911502 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:58:57Z
000911502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review, Double blind peer review, Open peer review$$d2021-10-13T14:58:57Z
000911502 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000911502 9801_ $$aFullTexts
000911502 980__ $$ajournal
000911502 980__ $$aVDB
000911502 980__ $$aUNRESTRICTED
000911502 980__ $$aI:(DE-Juel1)JSC-20090406