000911503 001__ 911503
000911503 005__ 20240709082038.0
000911503 037__ $$aFZJ-2022-04765
000911503 041__ $$aEnglish
000911503 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$eCorresponding author$$ufzj
000911503 1112_ $$aEuropean Magnetic Resonance Meeting 2022$$cUtrecht$$d2022-07-10 - 2022-07-14$$gEUROMAR 2022$$wNetherlands
000911503 245__ $$aLaplace inverted pulsed EPR relaxation to study polymer electrode/conductive carbon contact in lithium-ion battery
000911503 260__ $$c2022
000911503 3367_ $$033$$2EndNote$$aConference Paper
000911503 3367_ $$2BibTeX$$aINPROCEEDINGS
000911503 3367_ $$2DRIVER$$aconferenceObject
000911503 3367_ $$2ORCID$$aCONFERENCE_POSTER
000911503 3367_ $$2DataCite$$aOutput Types/Conference Poster
000911503 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1669114910_16489$$xAfter Call
000911503 502__ $$cUtrecht University
000911503 520__ $$aThe addition of conductive additives during electrode fabrication is a standard practice tomitigate low intrinsic conductivities of most cathode materials used in Li-ion batteries. Toensure an optimal conduction pathway, these conductive additives (carbon particles) need tobe in good contact with the active material. This aspect is crucial for Organic Polymer Radicalbatteries (ORB) where the insulating polymer backbone could hinder the conductive contactbetween redox-active groups and the carbon particles.Herein, we demonstrate the combined use of Pulsed-EPR relaxometry and Inverse LaplaceTransform (ILT) to study such electronic contact. The investigated system comprises of PTMAnitroxides, a commonly used redox unit in ORBs, and SuperP carbon black as the conductiveadditive. Samples with varying PTMA monomer to SuperP ratios (2:1 to 1:30) were preparedby adding nitroxide solutions to SuperP, followed by drying at 60°C. Pulsed-EPR basedInversion recovery experiments (30K) were conducted to obtain T₁ relaxation curves andILT[1] was used to obtain the corresponding relaxation time distributions. For 1:2, therelaxation distribution consists of three resolved relaxation components corresponding todifferent grades of contact between the carbon particles and the nitroxide radicals. Uponincreasing the SuperP amount in the 1:20 sample, more nitroxide radicals are brought intocontact with SuperP, resulting in a decrease of the slower relaxing component and an increaseof the faster relaxing components. Exchange interactions between the spins lead tocoalescence of spectral features making it difficult to separate these components in the EPRspectrum itself.Our analysis suggests that the composition of the electrode is a key factor in determining thequality of active material/conductive carbon contact and that pulsed EPR relaxometry incombination with ILT may serve as a robust tool to study these interactions.[1] J. Granwehr, P. J. Roberts, J. Chem. Theory Comput. 2012, 8, 3473–3482.
000911503 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000911503 536__ $$0G:(GEPRIS)441255373$$aInsight into doping mechanisms of polymer electrolyte / redox-active organic radical polymer lamellar composites (441255373)$$c441255373$$x1
000911503 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000911503 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000911503 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000911503 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000911503 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b1$$ufzj
000911503 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b2$$ufzj
000911503 909CO $$ooai:juser.fz-juelich.de:911503$$pVDB
000911503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
000911503 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185897$$aRWTH Aachen$$b0$$kRWTH
000911503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b1$$kFZJ
000911503 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b1$$kRWTH
000911503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b2$$kFZJ
000911503 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b2$$kRWTH
000911503 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000911503 9141_ $$y2022
000911503 920__ $$lyes
000911503 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000911503 980__ $$aposter
000911503 980__ $$aVDB
000911503 980__ $$aI:(DE-Juel1)IEK-9-20110218
000911503 980__ $$aUNRESTRICTED
000911503 981__ $$aI:(DE-Juel1)IET-1-20110218