000911515 001__ 911515
000911515 005__ 20221118130916.0
000911515 0247_ $$2doi$$a10.21203/rs.3.rs-2203610/v1
000911515 0247_ $$2Handle$$a2128/32664
000911515 037__ $$aFZJ-2022-04776
000911515 1001_ $$0P:(DE-HGF)0$$aWeihs, Antoine$$b0
000911515 245__ $$aLack of Structural Brain Alterations associated with Insomnia: Findings from the ENIGMA-Sleep working group
000911515 260__ $$c2022
000911515 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1668696580_26605
000911515 3367_ $$2ORCID$$aWORKING_PAPER
000911515 3367_ $$028$$2EndNote$$aElectronic Article
000911515 3367_ $$2DRIVER$$apreprint
000911515 3367_ $$2BibTeX$$aARTICLE
000911515 3367_ $$2DataCite$$aOutput Types/Working Paper
000911515 520__ $$aExisting neuroimaging studies have reported divergent structural alterations in insomnia. Here, we performed a large-scale coordinated meta-analysis by pooling structural brain measures from 1,085 subjects with and without insomnia symptoms across three international ENIGMA-Sleep cohorts. The influence of insomnia on MRI-based brain morphometry using an insomnia brain score was assessed. We collected case-control data from two sites, as well as population-based data from another site. Within each cohort, we used an ordinary least-squares linear regression to investigate the link between the individual regional cortical thickness and subcortical volumes and the presence of insomnia symptoms. Then, we performed a fixed-effects meta-analysis across cohorts based on the first-level results. For the insomnia brain score, weighted logistic ridge regression was performed on one sample, which separated patients with insomnia disorder from controls to train a model based on the segmentation measurements. Afterward, the insomnia brain scores were validated using the other two samples. The model was used to predict the log-odds of the subjects with insomnia given individual insomnia-related brain atrophy. After adjusting for multiple comparisons, we did not detect any significant associations between insomnia symptoms and cortical or subcortical volumes, nor could we identify a global insomnia-related brain atrophy pattern. The current study found inconsistent brain morphology differences between individuals with and without insomnia across three independent cohorts. Further large-scale cross-sectional and longitudinal studies using both structural and functional neuroimaging data are warranted to decipher the pathophysiology of insomnia at the brain level.
000911515 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000911515 588__ $$aDataset connected to CrossRef
000911515 7001_ $$0P:(DE-HGF)0$$aFrenzel, Stefan$$b1
000911515 7001_ $$0P:(DE-Juel1)190453$$aBi, Hanwen$$b2$$ufzj
000911515 7001_ $$0P:(DE-HGF)0$$aSchiel, Julian$$b3
000911515 7001_ $$0P:(DE-HGF)0$$aAfshani, Mortaza$$b4
000911515 7001_ $$0P:(DE-HGF)0$$aBülow, Robin$$b5
000911515 7001_ $$0P:(DE-HGF)0$$aEwert, Ralf$$b6
000911515 7001_ $$0P:(DE-HGF)0$$aFietze, Ingo$$b7
000911515 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b8
000911515 7001_ $$0P:(DE-HGF)0$$aJahanshad, Neda$$b9
000911515 7001_ $$0P:(DE-HGF)0$$aKhazaie, Habibolah$$b10
000911515 7001_ $$0P:(DE-HGF)0$$aRiemann, Dieter$$b11
000911515 7001_ $$0P:(DE-HGF)0$$aRostampour, Masoumeh$$b12
000911515 7001_ $$0P:(DE-HGF)0$$aStubbe, Beate$$b13
000911515 7001_ $$0P:(DE-HGF)0$$aThomopoulos, Sophia$$b14
000911515 7001_ $$0P:(DE-HGF)0$$aThompson, Paul$$b15
000911515 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie$$b16$$ufzj
000911515 7001_ $$0P:(DE-HGF)0$$aVölzke, Henry$$b17
000911515 7001_ $$0P:(DE-HGF)0$$aZarei, Mojtaba$$b18
000911515 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b19$$ufzj
000911515 7001_ $$0P:(DE-HGF)0$$aGrabe, Hans$$b20
000911515 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b21$$ufzj
000911515 7001_ $$0P:(DE-HGF)0$$aSpiegelhalder, Kai$$b22
000911515 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b23$$ufzj
000911515 773__ $$a10.21203/rs.3.rs-2203610/v1
000911515 8564_ $$uhttps://juser.fz-juelich.de/record/911515/files/4827fede-81a9-43a8-877c-d5882a524f8f.pdf$$yOpenAccess
000911515 909CO $$ooai:juser.fz-juelich.de:911515$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190453$$aForschungszentrum Jülich$$b2$$kFZJ
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b8$$kFZJ
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b16$$kFZJ
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b19$$kFZJ
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b21$$kFZJ
000911515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b23$$kFZJ
000911515 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000911515 9141_ $$y2022
000911515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911515 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911515 920__ $$lyes
000911515 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000911515 980__ $$apreprint
000911515 980__ $$aVDB
000911515 980__ $$aUNRESTRICTED
000911515 980__ $$aI:(DE-Juel1)INM-7-20090406
000911515 9801_ $$aFullTexts