000911525 001__ 911525
000911525 005__ 20240709081952.0
000911525 037__ $$aFZJ-2022-04785
000911525 041__ $$aEnglish
000911525 1001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b0$$eCorresponding author
000911525 1112_ $$a16th Multinational Congress on Microscopy$$cBrno$$d2022-09-04 - 2022-09-09$$wCzech Republic
000911525 245__ $$aFIB-based lamella preparation on MEMS chip for in-situ TEM
000911525 260__ $$c2022
000911525 3367_ $$033$$2EndNote$$aConference Paper
000911525 3367_ $$2DataCite$$aOther
000911525 3367_ $$2BibTeX$$aINPROCEEDINGS
000911525 3367_ $$2DRIVER$$aconferenceObject
000911525 3367_ $$2ORCID$$aLECTURE_SPEECH
000911525 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1669108331_2260$$xAfter Call
000911525 520__ $$aThe in-situ transmission electron microscope (in-situ TEM) method enables observing the morphological, structural, and chemical transition of the sample with stimuli such as heating or biasing via up to atomic resolution. For a successful in-situ TEM experiment, the sample should be prepared to fit the experimental requirements to stimulate correctly. In the sintering process, heating and gas environments are required as stimuli. Compared to heating, the gas environment is a challenging stimulus because the inside of TEM is ultra-high vacuum (10^-4 ~ 10^-9 Pa) condition. Environmental TEM (ETEM) can form the gas environment up to 10 Pa, but many sintering processes are conducted at atmospheric pressure (10^6 Pa). Therefore, a nano-sized closed chamber is mandatory to replicate the real sintering process in TEM. Electron transmittable thin SiN film-coated micro-electromechanical system (MEMS) chips enable the formation of atmospheric conditions in the TEM. If the sample is a nanoparticle, drop-casting on a MEMS chip is the simplest way to prepare. However, nanoparticle shape is not available to investigate the phenomena such as interaction on composite materials. The focused ion-beam (FIB) method is a useful preparation method for the TEM sample (lamella) from the bulk to analyze the sample beyond nanoparticles. The FIB-based preparation for the in-situ TEM method contains two processes; lamella preparation and lamella attachment on MEMS chip. Lamella preparation for MEMS chip is almost similar to regular TEM analysis, except if the stimulus is biasing. In the case of biasing experiment, the lamella should be prepared without the Pt layer, which is typically used as a protective layer during the FIB process. To obtain the lamella properly without Pt protection layer, the ion beam should be adjusted to lower electron voltage and lower current conditions.Lamella attachment on the MEMS chip is the most challenging point. Electron beam imaging and ion beam imaging are generally used to recognize 3-dimensional movement during the attachment. In MEMS chips case, especially for gas experiments, ion beam imaging can break the thin SiN film. To avoid breaking the SiN film, lamella should be controlled mostly on electron beam and carefully checked with minimum ion beam dose as much as possible. We will introduce the FIB-based sample preparation and in-situ TEM gas experiment result to investigate the solid-state electrolyte sintering process.
000911525 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000911525 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x1
000911525 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x2
000911525 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x3
000911525 7001_ $$0P:(DE-Juel1)180678$$aJo, Janghyun$$b1
000911525 7001_ $$0P:(DE-Juel1)177996$$aXu, Qi$$b2
000911525 7001_ $$0P:(DE-Juel1)180631$$aCamara, Osmane$$b3
000911525 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
000911525 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b5
000911525 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b6$$eCorresponding author
000911525 7001_ $$0P:(DE-Juel1)177092$$aBauer, Alexander$$b7
000911525 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8
000911525 909CO $$ooai:juser.fz-juelich.de:911525$$pec_fundedresources$$pVDB$$popenaire
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b0$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180678$$aForschungszentrum Jülich$$b1$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177996$$aForschungszentrum Jülich$$b2$$kFZJ
000911525 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177996$$aRWTH Aachen$$b2$$kRWTH
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180631$$aForschungszentrum Jülich$$b3$$kFZJ
000911525 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180631$$aRWTH Aachen$$b3$$kRWTH
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b5$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b6$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177092$$aForschungszentrum Jülich$$b7$$kFZJ
000911525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000911525 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
000911525 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000911525 9141_ $$y2022
000911525 920__ $$lyes
000911525 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000911525 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000911525 980__ $$aconf
000911525 980__ $$aVDB
000911525 980__ $$aI:(DE-Juel1)IEK-9-20110218
000911525 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000911525 980__ $$aUNRESTRICTED
000911525 981__ $$aI:(DE-Juel1)IET-1-20110218