000911534 001__ 911534
000911534 005__ 20240712100823.0
000911534 0247_ $$2doi$$a10.3390/rs14225726
000911534 0247_ $$2Handle$$a2128/32861
000911534 0247_ $$2WOS$$aWOS:000887559900001
000911534 037__ $$aFZJ-2022-04794
000911534 082__ $$a620
000911534 1001_ $$aHong, Jin$$b0
000911534 245__ $$aThe Long-Term Trends and Interannual Variability in Surface Ozone Levels in Beijing from 1995 to 2020
000911534 260__ $$aBasel$$bMDPI$$c2022
000911534 3367_ $$2DRIVER$$aarticle
000911534 3367_ $$2DataCite$$aOutput Types/Journal article
000911534 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669703915_11585
000911534 3367_ $$2BibTeX$$aARTICLE
000911534 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911534 3367_ $$00$$2EndNote$$aJournal Article
000911534 520__ $$aTropospheric ozone is an important atmospheric pollutant as well as an efficient greenhousegas. Beijing is one of the cities with the most serious ozone pollution. However, long-term date ofobserved ozone in Beijing are limited. In this paper, we combine the measurements of the In-serviceAircraft for a Global Observing System (IAGOS), ozonesonde observations as well as the recentlyavailable ozone monitoring network observations to produce a unique data record of surface ozone(at 14:00 Beijing time) in Beijing from 1995 to 2020. Using this merged dataset, we investigate thevariability in surface ozone in Beijing on multiple timescales. The long-term change is primarilycharacterized by a sudden drop in 2011–2012 with an insignificant linear trend during the full pe-riod. Based on CAM-chem model simulations, meteorological factors played important roles in the2011–2012 ozone drop. Before and after this sudden drop, ozone levels in Beijing increased signif-icantly by 0.42 ± 0.27 ppbv year − 1 before 2011 and 0.43 ± 0.41 ppbv year − 1 after 2013. We alsofound a substantial increase in the amplitude of the ozone annual cycle in Beijing, which has notbeen documented in previous studies. This is consistent with ozone increases in summer and ozonedecreases in winter. In addition, the results by the Ensemble Empirical Mode Decomposition (EEMD)analysis indicate significant interannual variations in ozone levels in Beijing with different timeoscillation periods, which may be associated with natural variabilities and subsequent changes inmeteorological conditions.
000911534 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000911534 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911534 7001_ $$00000-0002-9844-9206$$aWang, Wuke$$b1$$eCorresponding author
000911534 7001_ $$0P:(DE-HGF)0$$aBai, Zhixuan$$b2
000911534 7001_ $$aBian, Jianchun$$b3
000911534 7001_ $$aTao, Mengchu$$b4
000911534 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b5$$ufzj
000911534 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b6$$ufzj
000911534 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b7$$ufzj
000911534 7001_ $$aWang, Hongyue$$b8
000911534 7001_ $$aZhang, Jinqiang$$b9
000911534 7001_ $$aZhao, Shuyun$$b10
000911534 7001_ $$aZhu, Jintao$$b11
000911534 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs14225726$$gVol. 14, no. 22, p. 5726 -$$n22$$p5726 -$$tRemote sensing$$v14$$x2072-4292$$y2022
000911534 8564_ $$uhttps://juser.fz-juelich.de/record/911534/files/remotesensing-14-05726-v2.pdf$$yOpenAccess
000911534 909CO $$ooai:juser.fz-juelich.de:911534$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b5$$kFZJ
000911534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b6$$kFZJ
000911534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b7$$kFZJ
000911534 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000911534 9141_ $$y2022
000911534 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000911534 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911534 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000911534 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000911534 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911534 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000911534 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2021$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-25T08:07:22Z
000911534 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-25T08:07:22Z
000911534 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-25T08:07:22Z
000911534 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000911534 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS-BASEL : 2021$$d2022-11-09
000911534 920__ $$lyes
000911534 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000911534 9801_ $$aFullTexts
000911534 980__ $$ajournal
000911534 980__ $$aVDB
000911534 980__ $$aUNRESTRICTED
000911534 980__ $$aI:(DE-Juel1)IEK-7-20101013
000911534 981__ $$aI:(DE-Juel1)ICE-4-20101013