000911589 001__ 911589
000911589 005__ 20240206204910.0
000911589 0247_ $$2doi$$a10.1128/spectrum.02677-22
000911589 0247_ $$2Handle$$a2128/33335
000911589 0247_ $$2pmid$$a36445153
000911589 0247_ $$2WOS$$aWOS:000891967400001
000911589 037__ $$aFZJ-2022-04848
000911589 041__ $$aEnglish
000911589 082__ $$a570
000911589 1001_ $$0P:(DE-Juel1)178698$$aSundermeyer, Lea$$b0$$eCorresponding author
000911589 245__ $$aCharacteristics of the GlnH and GlnX Signal Transduction Proteins Controlling PknG-Mediated Phosphorylation of OdhI and 2-Oxoglutarate Dehydrogenase Activity in Corynebacterium glutamicum
000911589 260__ $$aBirmingham, Ala.$$bASM$$c2022
000911589 3367_ $$2DRIVER$$aarticle
000911589 3367_ $$2DataCite$$aOutput Types/Journal article
000911589 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707228312_14558
000911589 3367_ $$2BibTeX$$aARTICLE
000911589 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911589 3367_ $$00$$2EndNote$$aJournal Article
000911589 520__ $$aIn Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment.IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.
000911589 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000911589 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000911589 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911589 7001_ $$0P:(DE-HGF)0$$aBosco, Graziella$$b1
000911589 7001_ $$0P:(DE-Juel1)189001$$aGujar, Srushti$$b2
000911589 7001_ $$0P:(DE-Juel1)128946$$aBrocker, Melanie$$b3
000911589 7001_ $$0P:(DE-Juel1)145489$$aBaumgart, Meike$$b4
000911589 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b5$$eCorresponding author
000911589 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b6
000911589 7001_ $$00000-0002-8887-6917$$aBellinzoni, Marco$$b7
000911589 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b8
000911589 773__ $$0PERI:(DE-600)2807133-5$$a10.1128/spectrum.02677-22$$gp. e02677-22$$n6$$pe02677-22$$tMicrobiology spectrum$$v10$$x2165-0497$$y2022
000911589 8564_ $$uhttps://juser.fz-juelich.de/record/911589/files/Invoice_94317934%20.pdf
000911589 8564_ $$uhttps://juser.fz-juelich.de/record/911589/files/spectrum.02677-22-1.pdf$$yOpenAccess
000911589 8767_ $$894317934$$92022-11-21$$a1200187019$$d2022-12-13$$eAPC$$jZahlung erfolgt$$zUSD 2030,-
000911589 909CO $$ooai:juser.fz-juelich.de:911589$$pdriver$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost$$pVDB$$popenaire
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178698$$aForschungszentrum Jülich$$b0$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189001$$aForschungszentrum Jülich$$b2$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128946$$aForschungszentrum Jülich$$b3$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145489$$aForschungszentrum Jülich$$b4$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b5$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b6$$kFZJ
000911589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b8$$kFZJ
000911589 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000911589 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000911589 9141_ $$y2022
000911589 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911589 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000911589 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911589 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROBIOL SPECTR : 2021$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review, Blind peer review$$d2022-02-02T17:55:23Z
000911589 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-02T17:55:23Z
000911589 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911589 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-02T17:55:23Z
000911589 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMICROBIOL SPECTR : 2021$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000911589 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911589 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000911589 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000911589 980__ $$ajournal
000911589 980__ $$aVDB
000911589 980__ $$aI:(DE-Juel1)IBG-1-20101118
000911589 980__ $$aI:(DE-Juel1)IBI-7-20200312
000911589 980__ $$aAPC
000911589 980__ $$aUNRESTRICTED
000911589 9801_ $$aAPC
000911589 9801_ $$aFullTexts