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Abstract

Autonomously operated parallelized mL-scale bioreactors are considered the key to reduce bioprocess development cost and
time. However, their application is often limited to products with very simple analytics. In this study, we investigated enhanced
protein expression conditions of a carboxyl reductase from Nocardia otitidiscaviarum in E. coli. Cells were produced with
exponential feeding in a L-scale bioreactor. After the desired cell density for protein expression was reached, the cells were
automatically transferred to 48 mL-scale bioreactors operated by a liquid handling station where protein expression studies
were conducted. During protein expression, the feed rate and the inducer concentration was varied. At the end of the protein
expression phase, the enzymatic activity was estimated by performing automated whole-cell biotransformations in a deep-
well-plate. The results were analyzed with hierarchical Bayesian modelling methods to account for the biomass growth during
the biotransformation, biomass interference on the subsequent product assay, and to predict absolute and specific enzyme
activities at optimal expression conditions. Lower feed rates seemed to be beneficial for high specific and absolute activities.
At the optimal investigated expression conditions an activity of 1153 U mL~! was estimated with a 90% credible interval of
[992,1321] U mL~". This is about 40-fold higher than the highest published data for the enzyme under investigation. With
the proposed setup, 192 protein expression conditions were studied during four experimental runs with minimal manual
workload, showing the reliability and potential of automated and digitalized bioreactor systems.

Keywords Automation - Bioprocess development - Bayesian modelling - Escherichia coli - Protein expression - Stirred-
tank bioreactors - Whole-cell catalysis

Introduction

Because of the need to perform time-consuming and labor-
intensive experiments for bioprocess development, miniatur-
ized and automated bioreactor systems have been developed
with which a variety of process parameters can be screened

Nikolas von den Eichen and Michael Osthege contributed equally to rapidly [1, 2]. Parallel microbioreactor systems are often
this study. coupled with a pipetting robot (liquid handling station, LHS)
54 Nikolas von den Eichen to use the flexibility of the LHS for at-line process analysis

nikolas.eichen @tum.de [3-5]. It has been shown that microbioreactor systems can

yield scalable results for both biomass growth and product
formation [4, 6, 7]. Heterologous proteins are usually over
expressed by cloning the encoding gene downstream from a
regulated promoter in a suitable host to allow for cheap and
simple protein production [8]. To reduce adverse effects on
biomass growth due to the formation of the heterologous
protein, the cell formation phase is usually separated from
the product formation phase [6, 9—11]. This is accomplished
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by making protein formation controllable by inducers and
activating it only after the desired cell density has been
reached [11].

To be able to study these phases separately, we developed
a fully automated system with which cells are produced
firstly in the L-scale stirred-tank reactor and are transferred
secondly to parallel operated mL-scale stirred-tank reactors
after reaching the desired cell density for protein expression
[12]. Protein expression studies and product analyses are
then conducted at the mL-scale. In the past, however,
both this system and other microbioreactor systems have
predominantly investigated model proteins with highly
simplified product analytics [12—14] or product analysis
involved manual processing steps [3]. Manual steps in
the context of automated process development carry the
risk of merely shifting the effort required for bioprocess
development rather than reducing it. Therefore, the goal of
this study was to apply a fully automated parallel bioreactor
system for studies on the expression of a carboxyl reductase
(CAR) in Escherichia coli (E. coli). Carboxyl reductases
are a class of large enzymes (approximately 130 kDa) used
for the selective reduction of aldehydes from carboxylic
acids in various applications [15]. Chemicals resulting
from those reactions can be used in the manufacturing of
drugs for cardiovascular, antiparasitic, and anticholinergic
applications [15-17]. To quantify the expression success in
E. coli, whole-cell biotransformations were performed in
deep-well-plates (DWP) for the determination of enzyme
activity [18]. To keep the necessary robotic equipment as
simple as possible, the analysis of the biotransformation
was carried out without prior separation of the cells.
However, this necessitated the model-based evaluation of
the enzyme activity, since the photometric detection of the
biotransformation product is disturbed by the growing cells.

Aim of this study

To demonstrate the potential of miniaturized bioprocess
development, a total of 192 protein expressions and
264 whole-cell biotransformations were performed in
4 sequential experiments. The feed rate during protein
expression and the inducer concentration were examined in
a total of 42 different combinations. These two parameters
were selected because they have been shown in the past to be
critical for heterologous protein production [11, 12].

A detailed computational model of the experimental
process was implemented to describe observed absorbance
from underlying biomass and product concentrations. The
model captured not only the concentrations at observed time
points, but also comprises mechanistic descriptions of how
these concentrations result from otherwise unobservable
parameters and key performance indicators (KPIs) such as
specific enzyme activity. Using Markov-chain Monte Carlo
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(MCMC) methods, we quantified the posterior probability
distributions of model parameters and variables, thereby
obtaining uncertainty estimates for KPIs of interest.

Through Bayesian modeling, we determined the biomass-
specific and absolute enzyme activity within the investigated
parameter space and predicted optimal expression conditions
for the CAR protein in the E. coli process.

Materials and methods
Bacterial strain

E. coli K12 MG1655 RARE (#61440 at Addgene,
Watertown, USA) with a pETDuet plasmid with a
carboxylase gene from Nocardia otitidiscaviarum and a
pyrophosphatase from E. coli (EcPPase) under the control
of a T7 promoter [15] kindly provided by Prof. Dorte Rother
(Forschungszentrum Jiilich, Jiilich, Germany) was used for
all cultivations. The recombinant E. coli cells were stored
as cryo-cultures at -80 °C after mixing the cell suspension
1:1 with a 50 % (v/v) glycerol solution.

Media

Seed cultures were grown at 37 °C with LB-medium
(5 g L7 yeast extract, 10 g L~! peptone, 5 g L™! NaCl,
50 mg L~! ampicillin, pH 7.5) in 1 L shake flasks with
baffles at 150 rpm with a working volume of 100 mL. The
pH of the LB-medium was adjusted with 2 M NaOH prior
to autoclaving (20 min at 121 °C). Sterile-filtered ampicillin
was added aseptically after autoclaving the LB-medium.
All cultivations on the mL- and L-scales were carried
out with a defined minimal medium [19]. The final con-
centrations in the medium were as follows: 8.4 mg L™!
ethylenediaminetetraacetic acid (EDTA), 8.4mg L'
CoCl, % 6H,O ,  15mgL~'MnCl, + 4H,0, 1.5 mg L™'Cu
Cl, * 2H,0, 3 mg L"'H;BO;, 2.5 mg L~'Na,MoO, * 2H,0,
13 mg L™'Zn(CH,C0OO0), * 2H,0, 100 mg L=' Fe(III)
citrate, 133 g¢L'KH,PO,, 4gL '(NH,),HPO,,
1.7 g L~! citric acid * H,0, 24gL7! NaOH,
1.2 g L'"MgSO, * TH,0, 50 mg L~" ampicillin. The pH was
not adjusted prior to addition to the bioreactor. The initial
glucose concentration was 5 g L~!. The feed medium con-
sisted of 500 g L™! glucose with 12.5 g L~'MgSO, in fed-
batch processes on the L-scale. For the mL-scale, the feed
medium varied depending on the applied feed rate. For the
experiments with a feed rate of 4.8 g L~'h~! the feed medium
consisted of 300 g L~' glucose with 7.5 g L"'MgSO,.
For the experiment with the feed rates varied from 2-4
g L~'h~! the feed medium consisted of 200 g L~! glucose
with 5 g L~'MgSO,. For the experiment with the feed rates
varied from 1 - 2 g L~'h~! the feed medium consisted of
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100 g L' glucose with 2.5 g L~'MgSO,. The varying feed
concentrations were necessary to allow different feed rates
with the same feed dosage frequency by the liquid handling
system (LHS) while maintaining comparable reactor vol-
umes. Ignoring the uneven effect of evaporation, the glucose
concentration is not proportional to the feed rate.

Prior to transfer of the cells from the L-scale to mL-scale,
0.5 % (v/v) antifoam agent (Antifoam 204, Sigma-Aldrich /
Merck KGaA, Darmstadt, Germany) was added aseptically.
MgSO, = TH,0, glucose and ampicillin were added
aseptically after autoclaving of the medium. MgSO, * 7TH,0
and glucose were autoclaved separately, ampicillin was
sterile-filtered.

Seed culture

Seed culture preparation was performed in 1000 mL baffled
shake flasks inoculated with 500 pL of the cryo-culture
in 100 mL LB medium. The cells were grown for 7.5 h
in a rotary shaker (Multitron, Infors, Bottmingen-Basel,
Switzerland) at 150 rpm and 37 °C.

Stirred-tank bioreactors

The cultivation procedure was adapted from von den
Eichen et al. [12]. A parallel bioreactor system on an
L-scale (DASGIP Parallel Bioreactor System, Eppendorf
AG, Hamburg, Germany) with a working volume of 0.5
L was used for a cultivation consisting of a batch (initial
glucose concentration 5 g L™!) and subsequent fed-batch
phase with p,, = 0.1 2! to produce a sufficient cell density
for the induction of the protein production. The bioreactor
was equipped with a DO probe (Visiferm DO ECS 225 HO,
Hamilton Bonaduz AG, Bonaduz, Switzerland). The fed-
batch phase was started automatically based on the slow
decline of the dissolved oxygen (DO) signal followed by a
steep rise above 75 % during the batch phase. The pH was
controlled at pH 7.0 with a pH probe (EasyFerm Plus PHI
K8 225, Hamilton Bonaduz AG, Bonaduz, Switzerland).
During the cultivation on a L-scale, the temperature was 37
°C. The exponential feeding was stopped after 23 h process
time at a cell density > 10 g L~! to make sure that the
final dry cell mass concentration in the subsequently used
stirred-tank bioreactors will not exceed 40 g L™! to avoid any
disturbance of the fluorometric pH sensors [20].

After 23 h process time the cell broth from the L-scale
bioreactor was automatically transferred to a bioreaction unit
with 48 mL-scale stirred-tank-bioreactors operated with gas-
inducing stirrers (bioREACTOR48, 2mag AG, Munich, Ger-
many). The transfer procedure has been described in von den
Eichen et al. [12]. Due to more time-efficient pump control
compared to our previous publication, the total time needed

for the transfer was reduced to approximately 25 minutes.
Sterile single-use bioreactors with a working volume of 10
mL with baffles (HTBD, 2mag AG, Munich, Germany) with
fluorometric sensors for online DO and pH measurements
were used for all experiments (PSt3-HG sensor for DO, LG1
sensor for pH, PreSens GmbH, Regensburg, Germany). Dur-
ing cultivations on an mL-scale, the temperature was lowered
to 30 °C. The bioreaction unit was placed on the working
table of a liquid handling system (LHS, Microlab STARIet,
Hamilton Bonaduz AG, Bonaduz, Switzerland) equipped
with 8 pipetting channels, a plate handler, two tools for auto-
matic opening of special reaction tubes (FlipTubes, Hamil-
ton Bonaduz AG, Bonaduz, Switzerland), a microtiter plate
washer (405 LS, Biotek, Winooski, USA), a microtiter plate
reader (Synergy HTX, Biotek, Winooski, USA) and a plate
heater/shaker (Hamilton Heater Shaker, Hamilton Bonaduz
AG, Bonaduz, Switzerland).

The headspace of each stirred-tank-bioreactor was rinsed
with 0.1 L min~" sterile humid air. The headspace was cooled
to 20 °C to reduce evaporation during operation. The stir-
rer speed was constant at 3000 rpm throughout all culti-
vations. Parallel fed-batch processes with varying constant
feeding rates were performed on a mL-scale. Substrate
solution was added intermittently by the LHS with a target
frequency of 6 h~!. The precise timing of substrate addition
was controlled by a scheduling algorithm and varied based
on the occurrence of, for example, sampling events. The feed
solution consisted of glucose (100 — 300 g L~!) and MgSO,
(2.5 - 7.5 g L") with varying concentrations to allow for
dosing intervals at a minimum dosage volume of 14 pL. The
pH was controlled individually at pH 6.9 by the addition of
12.5 %(v/v)NH,OH . To save LHS time, the pH correction
was applied for all eligible reactors, i.e. when 12 out of 48
bioreactors showed a pH deviation, 12.5 (v/v)NH,OH was
added to all 12 reactors. The frequency at which the LHS
started these pH control procedures was 6 A\,

Isopropyl SS-D-1-thiogalactopyranoside (IPTG) with a
final concentration of 0.24 to 32 uM was added by the LHS
to induce recombinant gene expression one hour after the
fed-batch processes had been initiated on the mL-scale. The
IPTG stock solutions were stored in closed 1.5 mL reaction
tubes on the LHS workspace. During the IPTG addition
procedure, the LHS opened and closed the reaction tubes
automatically. IPTG concentrations were calculated based
on the initial reaction volume of 10 mL. To ensure sterile
operation of the LHS, the pipetting needles of the LHS were
washed with an aqueous solution of 70 % (v/v) ethanol and
with sterile filtered deionised water after each pipetting step.

All tasks (substrate addition, pH control, inducer addition,
sampling) were initiated by a priority-based scheduler
which weighed the tasks based on their real-time priority to
enable optimal process control when more than one task was
eligible. The detailed description of the scheduler working
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principle, aim and software engineering may be found in
Control of Parallelized Bioreactors I [21]. The priorities for
this application were feed > inducer addition > sampling
> pH control, whereby the sampling step was further split
up into sub-tasks to allow for more important tasks to be
executed in between. This is one of the advantages by
the scheduling architecture and allowed for a more stable
feeding frequency.

Analytical procedures

The cultivations on the L-scale were monitored online
by sensor data, whereas samples on the mL-scale were
generally taken every hour by the LHS, with two exceptions:
(a) the first and the second sample were taken at 0.083 h and
1.25 h, respectively and (b) the last three samples were taken
every two hours. Concretely, the OD data was captured by
the LHS, while the pH and DO online data was captured via
custom SiLA2 service implementations for the Bioreactor
48 block and PreSens sensors.

Sampling for the measurement of the optical density was
conducted automatically by the LHS. Initially, samples of
150 pLL were pipetted in a microtiter plate. All samples were
diluted sequentially in a second microtiter plate 1:10 and
1:100 with phosphate-buffered saline (PBS, 8 g L~! NaCl,
0.2 g L™! KCl, 1.44 g L"'\Na,HPO,, 0.24 g L"'KH,PO,).
The 1:100 diluted samples were used to measure the optical
density at 600 nm (ODy). Afterwards, both microtiter plates
were washed with a microtiter plate washer (405 LS, Biotek,
Winooski, USA) operated by the LHS. The sample liquids
were initially aspirated and discarded followed by three dis-
pensing and aspiration steps with 300 pL deionised water
with 0.1 % (v/v) tween (Tween 20, Amresco, Solon, USA).
To estimate the cell dry weight (CDW) concentration in the
stirred-tank bioreactors on a mL-scale, a linear correlation
between ODg,, and CDW concentration was prepared in cul-
tivations on a L-scale. For CDW determinations, 3 samples
with 2 mL of culture broth were withdrawn during fed-batch
operation and centrifuged for 5 min at 14.930 g in pre-dried
and pre-weighed culture tubes. The pellet was dried for at
least 24 h at 80 °C before weighing.

Whole-cell biotransformations

The used biotransformation procedure is adapted from
Schwendenwein et al. [18]. The whole-cell biotransforma-
tions were conducted automatically at the end of the mL-
scale processes in a deep-well-plate (DWP) with working
volumes of 1 mL. The biotransformation consists of the
conversion of 3-hydroxybenzoic acid to 3-hydroxyben-
zaldehyde. For detection purposes 2-amino benzamidox-
ime (ABAO) is added which reacts with the 3-hydroxy-
benzaldehyde formed in the biotransformations to
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4-amino-2-(3-hydroxyphenyl)-1,2,3,4-tetrahydroquinazo-
line-3-oxide which can be measured photometrically at 360
nm. For all 48 sample positions, 25 pL cell broth from the
stirred-tank bioreactors on the mL-scale were mixed with 250
pL 10 mM 3-Hydroxybenzoic acid dissolved in PBS, 500 pL
minimal medium (see section “Media”) with 10 g L~ glucose
and 225 pLL PBS. For each sequential cultivation, three identi-
cal sets of calibration curves were generated. Each calibration
set includes six different product concentrations. The educt
solution (3-hydroxybenzoic acid) was replaced with different
amounts of the product solution (12 mM 3-hydroxybenzoic
aldehyde dissolved in PBS) to achieve a final product con-
centration in the DWP ranging from 0 to 3 mM. To have
identical volumes in all calibration wells, the wells were filled
up to 1 mL with PBS after the addition of cell solution and
mineral medium. The biomass for all calibration samples was
aspirated from the first (A1) bioreactor position of the respec-
tive experiment. All solutions required for the whole-cell bio-
transformations were prepared freshly for each experiment.

After preparing the initial reaction mixture for the bio-
transformations, the deep-well-plate was shaken at 35 °C
and 1000 rpm (Hamilton Heater Shaker, Hamilton Bonaduz
AG, Switzerland). Every 1.1 hours, 50 pL of all positions
(48 sample positions and 18 calibration positions) was trans-
ferred to a microtiter plate and mixed with 50 phL ABAO
solution. The ABAO solution consisted of 10 mM ABAO
dissolved in sodium acetate buffer (3.69 g L~! sodium ace-
tate, 3.15 % (v/v) acetic acid, 5 % (v/v) dimethyl sulfoxide,
pH 4.5). Afterwards, the microtiter plate was incubated at
room temperature for 45 minutes and measured photomet-
rically at 360 nm and 600 nm in a microtiter plate reader
(Synergy HTX, Biotek, Winooski, USA). The microtiter
plate was washed with a microtiter plate washer (405 LS,
Biotek, Winooski, USA) operated by the LHS. The sample
liquids were initially aspirated and discarded followed by
three dispensing and aspiration steps with 300 pL. deionised
water with 0.1 % (v/v) tween (Tween 20, Amresco, Solon,
USA). Finally, the remaining washing solution was aspirated
and discarded and the microtiter plate was transferred by
the LHS to its initial position. A total of 5 measurements
including a measurement directly after biotransformation
start were conducted.

Data processing

The dataset exported from the laboratory automation
platform was processed into a set of tabular DataFrame
structures using pandas [22, 23]. Every unique
combination of glucose feed rate and IPTG concentration was
assigned a unique identifier (design_id) for identification
inside the model. Likewise, every biotransformation reaction
was assigned a replicate id. The association between
all experimental designs, whole-cell biotransformation
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reactions and relevant meta information such as assay well
positions was tracked in a tabular form (“df_layout” sheet
in dataset.x1sx). Reference wells of known product
concentration were equally included in the dataset, hence the
layout table includes a column with product concentration
values where available. Measurements of absorbance at 360
nm and 600 nm, respectively, were kept in separate tables
(“df_360” and “df_600" in dataset .x1sx), organized
by the previously assigned replicate id.

A generative hierarchical Bayesian model of the
experimental process was built using the probabilistic
programming language PyMC [24, 25]. It resembles
the data generating process from experimental design
via performance metrics and experimental effects to
concentration trajectories and eventually predicting the
resulting observations. A detailed explanation of the model
will be presented in Results and Discussion. Posterior
samples were obtained by MCMC sampling with the No-U-
turn-Sampler (NUTS) implemented in PyMC. Diagnostics
and visualizations were prepared using ArviZ and matplotlib
[26-29] and probabilities were calculated from posterior
samples using pyrif [30].

Results and discussion
Experimental design

Two variables were investigated during four parallel experi-
ments: the glucose feed rate and the inducer concentration
at the mL-scale. In total, 42 unique combinations of inducer
concentration (IPTG) and feed rate (Fig. 1) were investigated
with 4 to 8 biological replicates per unique combination. For
controlling of the sequential batch to batch reproducibility of
the mL-scale experiments, the reaction conditions at the feed

40
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& 10 o ° o [ ) [ ) l
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3 4 5

Feed rate [g L™t h™1]

Fig. 1 Experimental design of the experiments to identify enhanced
protein production conditions for E. coli NoCAR: Each point depicts
one unique combination of feed rate and inducer concentration that
was applied during protein expression on the mL-scale. Each combi-
nation was tested in 4-8 biological replicates in total

rate of 2 g L~'h~! were investigated twice in two sequential
experiments.

Experimental data

The conditions for the cell production phase at the L-scale
and the cell transfer stayed the same throughout all four
parallel experiments. After a process time of 22.75 h, a cell
dry weight concentration of 13.35 + 1.4 g L~! was achieved
with four biological replicates. This indicates that it was
possible to get similar initial conditions for each of the
parallel mL-scale protein expression studies.

Cell dry weight concentrations (CDW), pH and DO sig-
nals of three fed-batch processes performed on a mL-scale
are shown in Figs. 2, 3 and 4.

As expected, there is a positive correlation between the
applied feed rate and the cell growth. However, the biomass
yields (0.25 g, &' glucose, 0.22 g, &' glucose and
0.28 g,..;is &' glucose at feed rates of 4.8 g L~'h=,3 g L=1h~!
and 1 g L7'h~!, respectively) is lower than expected for E.
coli growing with glucose as a carbon source [31]. This may
be due to the starvation period between intermittent glucose
additions with a frequency of ~ 6 A~! or due to the protein
production [20].

After process start, the DO rises to about 90 % air satu-
ration (Fig. 3.). After that, the DO drops to about 40-60 %
air saturation after each substrate addition with a step-time
of 10 min followed by an increase after a few minutes due
to the consumption of the glucose added intermittently.

s]A

[g
N
S

[g
N
o

[g
N
)

Time [h]

Fig.2 CDW concentrations measured in fed-batch operated stirred-
tank bioreactors with E. coli NoCAR on a mL-scale: CDW concen-
trations were estimated based on at-line measured ODy,. The graphs
depict a feed rate of A 4.8 g L™'h", B3 gL 'h"and C 1 gL~ 'h!
at inducer concentrations of A 0.48 pM IPTG, B 6 pM IPTG and C
12 uM IPTG. The vertical dashed lines indicate the IPTG induction.
Each graph shows the mean and standard deviation of 4 parallel bio-
reactors. (V =10 mL, T = 30 °C, n = 3000 rpm)
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Fig.3 DO concentrations measured in fed-batch operated stirred-tank
bioreactors with E. coli NoCAR on a mL-scale: The graphs depict a
feed rate of A4.8 g L-'h~!, B3 g L~ 'h~"and C 1 g L~'A~" at inducer
concentrations of A 0.48 uM, B 6 uM and C 12 pM, respectively. The
vertical dashed lines indicate the addition of IPTG. The feeding fre-
quency was ~ 6 h~!. (V=10 mL, T = 30 °C, n = 3000 rpm)
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Q6.9 1
6.7
6.5
7.5
7.3
T 7.1
Q6.9 1
6.7
6.5
7.5
7.3
T 7.1
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Fig.4 pH measured in fed-batch operated stirred-tank bioreactors
with E. coli NoCAR on a mL-scale: The graphs depict a feed rate of
A48gL'h™!, B)3 gL 'h"and (C)1 g L~'h~! at inducer concen-
trations of (A) 0.48 pM, (B) 6 pM and (C) 12 pM. The feeding fre-
quency was = 6 h~!. The frequency at which the LHS added 12.5 %
(v/v) NH,OH to adjust the pH was ~ 6 h~!. The vertical dashed lines
indicate addition of IPTG. (V = 10 mL, T = 30 °C, n = 3000 rpm)

After several hours process time, the DO drop seems to be
proportional to the glucose feed rate, i.e. the DO minimum
after each substrate addition is approximately 40 % at a feed
rate of 4.8 g L~'h~! compared to 60 % at a feed rate of 1
g L~'h—1. This is probably caused by the higher biomass
density at a higher feed rate (see Fig. 2). During the first
hour at a feed rate of 4.8 g L~'h~!, there is no increase of
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studied thoroughly by Faust et al. [20]. It was found that the
intermittent substrate feeding did not lead to lower final cell
densities, but did reduce heterologous protein productivity
for some target proteins. Further studies would be necessary
to investigate whether the NoCAR expression is susceptible
to intermittent substrate feeding.

The pH-setpoint for the proportional controller was pH
7.0. Due to the nature of a proportional controller, a small
deviation (approx. pH 0.1) from the setpoint was observed
(Fig. 4). Apart from that, the pH oscillates in a very narrow
window of approximately pH 0.15 due to the intermittent
pH correction by the LHS and the intermittent metabolic
activity of the cells due to the intermittent feeding [32].
Overall, the pH was tightly controlled at about pH 6.9. The
small pH deviations from that value will most likely be too
small to have biological impact on E. coli growth [33, 34].
However, there might be an influence on protein expression
and enzyme activity [35, 36]. Due to the intermittent dosage
by the LHS, and the lower priority assigned for such tasks,
those pH oscillations can not be avoided with this setup.

After 18 h of process time on the mL-scale (17 hours of
protein expression) a biotransformation was prepared for each
bioreactor to determine the final enzymatic activity in each
bioreactor. Additionally, a calibration curve with a total of 18
positions was prepared based on the biomass from the first
ml-scale bioreactor in the current experiment (A1). From the
biotransformation in the Deep-Well-Plate (DWP), samples
were taken every 1.1 h to measure the product concentration
(360 nm) and biomass growth (600 nm) photometrically.

Challenges in data analysis

A sophisticated data analysis workflow is needed to gain
quantitative insight from a dataset that is not only hetero-
geneous due to the number of investigated conditions and
observed variables, but also grows over time as more experi-
ments are conducted. The goal is to quantify metrics that
characterize the performance of the whole-cell biocatalysts
produced at varying process conditions. Most importantly,
these metrics must be independent of individual experi-
mental batches to avoid drawing incorrect conclusions from
“golden batch” effects. Also, the metrics and the uncertainty
about them must be inter- and extrapolated towards yet
untested process conditions. On the other hand, the anal-
ysis must deal with a variety of experimental effects that
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inevitably occur in the automated testing workflow: (a) The
initial CDW concentration in all whole-cell biotransforma-
tions and reference wells of the DWP depends on the feed
rate applied in the previous fed-batch processes (Fig. 5). (b)
The E. coli cells continue to grow during the 5 h biotransfor-
mation, but the growth rate depends on the product concen-
tration (Fig. 5). (c) The biomass contributes to absorbance at
360 nm such that product concentration can not be measured
independently.

To account for all these effects simultaneously, a com-
putational model was developed. In the following sections,
various model components and results from the computa-
tional model will be introduced, starting with the calibration
models needed to explain observed absorbance at 360 and
600 nm given predicted CDW and product concentrations.

-hydroxy benzaldehyd:

Absorbance at 600 nm [a.u.]

0.0

Time [h]

Fig.5 600 nm absorbance in reference wells with known 3-hydroxy
benzaldehyde concentrations: Initial absorbance from biomass in
the 12 reference wells varies between the experiment batches. The
increase in 600 nm absorbance over time negatively correlates with
the 3-hydroxy benzaldehyde concentration, indicating that formed
product inhibits the growth of the whole-cell biocatalyst

Calibration models
Biomass concentration

A separately acquired biomass calibration dataset was used
to fit two models ¢, x 600 nm aNd Pem x 360 nm deSCTibing the
relationship between CDW concentrations and absorbance
at 360 nm, and 600 nm respectively (Fig. 6,Fig. 7). The
calibration at 360 nm is required to account for interference
with the ABAO reaction product measurements at the same
wavelength.

The models were built with the calibr8 package [37,
38] using an asymmetric logistic function of the logarithmic
biomass concentration to describe the mean of normally
distributed absorbance observations. Since the absorbance/
CDW relationship exhibits a heteroscedastic noise, the scale
parameter of the Normal distribution was modeled as linearly
dependent on the mean. The models explain the observations
reasonably well, even outside the experimentally relevant
CDW concentration range of 0.1 — 0.5 g/L.

Product concentration

The ABAO reaction was performed to quantify 3-hydroxy
benzaldehyde. The absorbance of its reaction product was
measured at 360 nm in all assays. A separate calibration
dataset was obtained by performing the assay procedure
with reference samples of known 3-hydroxy benzaldehyde
concentrations (Fig. 8). Reference samples were prepared
without biomass and with different amounts of acetic acid
to exclude biomass absorbance, and investigate pH robust-
ness of the method.

A linear calibration model ¢, p 360 nm With heteroscedas-
tic, normally distributed observation noise was fitted to the
360 nm measurements of product calibration samples.
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Fig.6 CDW calibration at 360 nm: The spread of observations (blue
dots) is modeled by a calibr8.LogIndependentAsymmetri-
cLogisticN model with scale degree=1 to account for non-
linearity (left) and heteroscedasticity (right). Green areas depict the
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intervals of 95 %, 90 % and 68 % probability of observations accord-
ing to the model. The gray areas depict the experimentally relevant
ranges
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Fig.8 Product calibration at 360 nm: In the observed range, the
absorbance at 360 nm (blue dots) followed a linear trend depend-
ing on the 3-hydroxy benzaldehyde concentration. The model was

All calibration model parameters were estimated by
maximum likelihood using SciPy optimizers. For code and
Jupyter notebooks that can be executed to reproduce this
analysis we refer to the accompanying GitHub repository
(https://github.com/JuBiotech/diginbio-car-paper, [39]).

Process model

This model closely resembles the biotechnological process
that generated the dataset, therefore we call it process model
henceforth. Starting from input parameters such as specific
biotransformation activity, random effects, or dependence of
final 10 mL reactor CDW concentration on glucose feed rate,
the process model simulates CDW and 3-hydroxy benzalde-
hyde concentrations in each biotransformation well across
all experiments.

Table 1 summarizes the symbols, meaning, and units used
in the context of the process model.

@ Springer

Product [mM]

Product [mM]

built from a calibr8.BasePolynomialModelN model with
mu_degree=1 and scale degree=1. The grey areas depict the
experimentally relevant areas of the calibration

A likelihood needed for parameter inference by Markov-
chain Monte Carlo (MCMC) is created from process
model predictions and observed absorbance according to
relationships described by the separately fitted calibration
models @ey x 600 nm> Pemx,360 nm AN Pemp 360 nm (1) At
600 nm this is the likelihood of the observed data given the
predicted CDW concentration X. At 360 nm however, both
biomass X and ABAO reaction product absorb and therefore
the sum of their absorbance needs to be taken into account
for the likelihood.

Note that while it is the ABAO reaction product that
contributes absorbance at 360 nm we performed the ABAO
assay calibration with known 3-hydroxy benzaldehyde
concentrations, so the corresponding model ¢, p360 nm
describes 360 nm ABAO reaction product absorbance as
a function of 3-hydroxy benzaldehyde concentration. For
simplicity, we therefore use the symbol P to refer to the
product of interest concentration: 3-hydroxy benzaldehyde
in the biotransformation solution.
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Table 1 Glossary of

Meaning

.. . Symbol Unit

abbreviations used in the

modeling context BTR na.
MBR n.a.
DWP n.a.
Dem n.a.
Dpm n.a.
X 8cow L7
P mmol L™
A a.u.
Hx, Hp a.u.
oy, Op a.u.
L _
7 _
GP n.a
d _
k(d,d") n.a.
$ h=" /(8cow L)
k h!

Bench-top reactor

Macro bioreactor

Deep-well plate

Calibration model

Process model

Biomass concentration

3-hydroxy benzaldehyde concentration

Absorbance at wavelength .

Mean of absorbance readouts expected from biomass/product
Standard deviation of absorbance readouts from biomass/product
Likelihood

Lengthscale of fluctuations in dependence on d

Gaussian process distribution

log,, of the process design (feed rate, IPTG conc. or both)
Covariance function to obtain the kernel of a Gaussian process

Specific biocatalyst rate constant

Mproduct h_l )
Absolute biocatalyst rate constant ( Nubstrate

Ly = Lo nm(A600 nm | Aso0 nm,obs)

: ‘636() nm(A360 nm | A360 nm,obs)
where

Agoo nm ~ Normal(by 600 nm> 5X.600 nm)
(Mx.,600 nm> 9,600 nm) = Pem.x,600 nm (X)
As60 nm ~Normal(Pse0 wms 6360 nm) (1)

M360 nm = Hx,360 nm T HP,360 nm

_ 2 2
0360 nm = \/ 6x,360 nm~ 1 OP 360 nm
(PX,360 nm> 0,360 am) = ¢cm,x,360 nm(X?,repchate)

(M 360 nm> OP.360 nm) = Pem,P360 nm (Pf,repﬁcme)

The above observation model applies to biomass X and
3-hydroxy benzaldehyde concentration P at every time point,
in every replicate of either a biotransformation reaction or
reference sample (2). Reference wells of known product
concentrations, but without 3-hydroxy benzoic acid, are
also included in the model, albeit with the assumption that
the 3-hydroxy benzaldehyde concentration remains constant
over time.

XY,DWP }

@

XY,repchate = { T.reference’

_f,repﬁcate P(Y),refe;ence’ P?,DWP }

The process model to describe these per replicate and per
time point concentrations is described in the following
sections.

Since almost all process model variables are vectors or
matrices, we denote dimensions by subscripts with arrows.

For example, the notation )?? pivp OF f’? pivp Should be inter-
preted as 2-dimensional variables (matrices) with entries for
each combination of time point and DWP well. The mean-

ings of dimension symbols is summarized in Table 2.
Biomass process model

The biomass in the whole-cell biotransformation experiment
is sourced from a “seed train” of cultivations in three
different scales and operating modes: (a) 1 L L-scale
fed-batch stirred-tank bioreactor with 1 per round of
experimentation. (b) 10 mL mL-scale fed-batch stirred-tank
bioreactor with 48 per round of experimentation. (c) 1 mL
biotransformation in square deep-well plate with 66 per
round of experimentation.

The process model must describe biomass in each well
of the biotransformation, so it can be accounted for in the
360 nm absorbance. A universally applicable activity metric,
that can be interpreted independently of experimental
batch effects, is desired. Therefore, the model must
additionally describe biomass in a way that excludes random
experimental batch effects. The first process stage at which
such an experiment-independent prediction is needed, is the
final biomass concentration of the 1 L batch cultivation.

Concretely, we describe the per-experiment final biomass
concentration at the 1 L scale as a LogNormal-distributed
variable called ien +pir With an entry for each experimental
run (3). To obtain an experiment-independent prediction,
we introduced X, g pacen &S @ group mean prior, also known
as a hyperprior, around which the Xen aptr 18 centered. The
prior on X, paccn 18 Weakly (large o) centered at 0.5 g/L,
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Table 2 Dimensions in the Symbol

model context
BTR 4
MBR 191
Divp 191
repl?caza 263
7 5
gic 6
IPTG %
de;ign 42

L-scale batches

mL-scale reactor vessels

DWP wells with active biotransformations

DWP wells, which includes biotransformation and reference wells
Time points at which observations were made

Glucose feed rates investigated

IPTG concentrations investigated

Unique combinations of glucose feed rate & IPTG concentration

whereas actual batches should only deviate from that group
mean by about 5 %.

Xendpateh ~ LogNormal(u = In(0.5), 0 = 0.5)

% 3)

end BTR ™ LogNormal(u = In(Xpq pacn)» © = 0.05)

This hierarchical structure is a common motif in Bayesian
modeling since it enables a model to learn variables that are
essential to the process understanding (here: X.,,q pacen) While
retaining the ability to describe the fine-grained structure of
the experimental data (here: ien 4pfr)- The motif of hierar-
chically modeled variables was used in several places of our
bioprocess model. For a thorough introduction to hierarchi-
cal modeling, we recommend [40].

The second process stage in the biomass seed train is
the enzyme expression in a 10 mL scale under fed-batch
conditions. Every 10 mL stirred-tank reactor was
inoculated with culture broth from a 1 L reactor, hence a
mapping fue_vir Yi€lds initial biomass concentrations
istart,MT%R by sub-indexing the f(m 4pir Variable. The exper-
imental design of the fed-batches comprised varying glu-
cose feed rates and IPTG concentrations. It is plausible to
assume a dependence of the final biomass concentration
X enamir ON the glucose feed rate. Without any mechanistic
assumptions, we lump the final biomass concentration per
1 mL-scale reactor as the product of initial biomass con-
centration with a positive factor X - that depends on

factor,glc

the glucose feed rate (4). Dependence of X on the

factor,ch
glucose feed rate is modeled by a Gaussian process (4)
such that our model can also interpolate and make
predictions for new glucose feed rate settings.

formally, a GP is an uncountable sequence of random
variables, any subset of which follows a multivariate
normal (also known as “Gaussian’) distribution [41]. For
understanding our model, however, it is sufficient to think
of GPs as a probability distribution of functions that
fluctuate with some lengthscale and variance. Here, this

@ Springer

distribution over functions is used, because the model

must describe 5, - as a function of the glucose feed rate
esign

Ddefign’

appropriate.

but we are uncertain which function would be

Xstart,MTsR = fpTRMBR (Xend,DA§GIP)

Xend,MfSR = Xstart,MER ) chaMﬁR(Xfactor,ch)
with
ln(Xf actor,gfc) = flnaXfacmvg-lc (log 10 (Ddesi gn,gic ) @)

fo (d) ~GPO,k(d,d")

factor,glc

_@=d')?

kd,d'y=o%-e 7
o ~ LogNormal(In(0.3),0.1)
¢ ~ LogNormal(In(0.34),0.1)

The GP was parametrized by a mean function of 0, thereby

centering the prior for X - around 1. For the covariance
factor,glc

function we chose a scaling parameter ¢ such that the prior
variance for the factor is around +30 %. The prior for ¢ in
the exponential quadratic kernel encodes a belief that
)_éfamr’gic varies smoothly on a lengthscale of around half of
the (logarithmic) design space (Fig. 9).

The third and final process stage is the biotransformation.
Here, the initial biomass concentration in every replicate
well of the DWP )zo,repﬁcate
tration from a corresponding 10 mL reactor (5). The biomass
concentration continued to change over the course of the
biotransformation, because the solution also contained glu-
cose as a carbon source. Inspired by the u(f) method
described in [42] we account for this biomass growth during
the biotransformation with a Gaussian random walk of the
discretized growth rate ﬁ?,rep jicare L€ TESUlL are biomass con-
centrations for every replicate well and measurement cycle

equals the final biomass concen-

-

XY,repchate (5)
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Glucose feed rate [ggiucose Lichetor N1

Fig.9 Prior and posterior of feedrate-dependent final fed-batch bio-
mass concentration: Before observing the data (prior, left) the model
predicts a broad distribution of functions (thin lines) that could
describe the relationship between feed rate and final fed-batch bio-
mass concentration. After observing the data (posterior, right), the

XO,replfcale = f MfBRﬁrepchale(Xend,MﬁR)
X X - cumsum(ii; ., e"il‘,re ficare)
0,replicate preptedte - teptieat (5)

~ GaussianRandomWalk(c = 0.1)

Xt >1 ,repl?cale =

N
H 1,replicate

Biotransformation reaction process model

Next to biomass, the second important contributor to
observed absorbance is the 3-hydroxy benzaldehyde con-
centration f)f,repﬁcate that reacted with Al}AO reagent. In the
reference samples this concentration P(Y)’refe;mce
and assumed to be constant. For the remaining wells it is
the reaction product concentration of the biotransforma-
tion f)Y,DWP' Here we assume an initial product concentra-
tion P, = 0 and model the biotransformation reaction as a
Ist order reaction (6) starting from a global initial benzoic

acid concentration S, with a rate constant k, ;.

is known

3 R
P?,DVVP = SO - (1 — e facwalpWp 5piip)
tactual,DWP = trecorded,DWP + tdelay (6)

laeay ~ HalfNormal(c = 0.1)

——""/

0 1 2 3 4 5 6
Glucose feed rate [ggucose Lieactor N711

final biomass turned out lower than expected, but the distribution of
possible relationships is much narrower. Only outside the experimen-
tally investigated range of 1.0 — 4.8 g L™! the uncertainty increases
again

This well-wise rate coefficient 75?, Divp [A~']from (6) depends
on three factors. The first is the concentration of the whole-
cell biocatalyst )??,DVVP [gcpw/L] as obtained from the bio-
mass model described above. The second factor is the bio-
catalyst’ specific rate coefficient s design [% /& CEW ]that depends
on the experimental design of the expression phase. The

third factor is a batch-wise random effect F w7 [—]t0 account
for remaining experimental variability (7).
z?! pivp ~ LogNormal(ln(M%mwp), 0.05)
i = Xipwe i Gesign) /2 (Fei)
with @)

fi: de;ign — DWP
f, : BTR — DWP

For the overall bioprocess optimization study we were inter-
ested in two quantities: Design-wise specific rate coefficients
S osien and an experiment-independent initial rate coefficient
esign
kO,de;ign
from the fed-batch expression. The 5, - ~parameter is part
R esign R .
of the above equation and modeled by a two-dimensional
Gaussian process to allow for inter- and extrapolation to new

experimental designs.

that accounts for the biomass concentration resulting
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Ede;ign is strictly positive, and we expect it around
0.1 — 0.8 [x~!]. The model outlined in (8) achieves both
properties by describing a GP for In(s deEign) and assigning
a corresponding prior for the kernel variance . The prior
for lengthscales ¢ was centered on the half of the logg
range (upper minus lower bound) of the design space. A

similar structure was used earlier for the )Zfamr dc variable
in the upstream biomass model.
sde;ign = /lsdﬁ;[gn ) Sde{ign
ﬁsl _ ~ LogNormal(In(0.75),0.3)
ln(Fsdes-iéZu) = fgp(lgglo(Dde;lg”))
fop(d) ~ GP(0,k(d.d")) ®)
@-d'?
kd,d)=c*-e 7
o ~ LogNormal(In(0.7),0.2)
£ ~ LogNormal(In(range), 0.1)
range = (0.681,2.125)7
Finally, the initial rate coefficient metric 750 desien [h~']is

derived from model parameters that do not depend on batch/
reactor/replicate-specific variables (9).

- -

kO,de;ign = Sdeﬁ'gn ’ end,degign (9)
end,design Xend,batch ’ Xfaclor,gic

Modelling results

The previous three chapters outlined how trajectories of
CDW concentration (Sec. 3.6) and product concentration
(Sec. 3.7) were predicted and how these trajectories were
fed into the three calibration models (Sec. 3.4) relating
them to the observed data. Because this entire model was
implemented as a symbolic computation graph, the PyMC
and Aesara frameworks can auto-differentiate the likelihood
(1) to obtain gradients needed for efficient MCMC sampling
(Sec. 2.7).

After MCMC sampling of the process model param-
eters, a variety of diagnostics, predictions and visualiza-
tions were prepared from the result. Similar to the posterior
predictive distribution of the biomass/feed rate relationship
(Fig. 9), the 2-dimensional Gaussian process component
of the model was used to predict inter- and extrapolated
specific biotransformation activity in dependence on the
experimental design parameters. The visualization of the
specific activity relationships posterior distribution (Fig. 10)
exhibits a peak at low glucose feed rates and high IPTG
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Fig. 10 Prediction of specific activity: The surfaces show the median
(center surface) and 90 % highest density interval of the posterior pre-
dictive distribution for specific activity as a function of the experi-
mental design parameters. The highest specific activities are predicted
at high IPTG concentration once in the low and once in the high
feed rate regime. However, the uncertainty at lower feed rates is high
which can be seen by the comparison of the rear-left with the front-
left corners of the visualization. Surface color encodes the specific
activity using the “Jet” colormap [43] for easier visibility
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Fig. 11 Predicted rate constants at initial biotransformation biomass
concentration: The surfaces show the median (center surface) and
90 % highest density interval of the posterior predictive distribution
for the rate constant to be expected from biomass suspension after the
fed-batch as a function of the experimental design parameters. Sur-
face color encodes the rate constant using the “Jet” colormap [43] for
easier visibility
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concentrations. Generally, the specific activity is higher
for high IPTG concentrations, but at least for high glucose
feed rates where more experimental data are available (see
Fig. 11) we observed the IPTG concentration to saturate at
~ 10°3 M. This observation is in line with a previous study
on mCherry expression where the IPTG saturation concen-
tration was found at 10" uM [12].

The highest investigated experimental design was at a
feed rate of 1 ¢ L~'A~! and an inducer concentration of 12
pM IPTG. This is more than two-fold higher than that at a
feed rate of 4.8 g L~'h~!, yet the model predicts a compa-
rably high specific activity at such a low feed rate. Conse-
quently, a benefit of lower feed rate during protein expres-
sion cannot be ruled out for this protein.

The oscillatory behavior of the prediction is in line with
the localization of tested experiment designs, i.e. the uncer-
tainty rises between each investigated experimental setup.
This is visualized in Fig. 12, where the width of the 90 %
highest density interval—the distance between the lower and
upper surface in Fig. 11 is shown as a heatmap. In future
investigations, a more evenly distributed localization of
tested experiment designs should help the model to make
smoother predictions.

In this study, the best rate constant was predicted at
a feed rate of 4.8 g L™'h~! and an IPTG concentration
of 27.6 uM with 0.64 h~!, which can be converted to an
initial enzymatic activity of 1068 U mL~' (mL refers to

°
o

o

%)
o
o))

©
i

width of rate constant 90 % HDI/h~1

o
N

©

n
©
N

logio(glucose feed rate /g L™! h™1)
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Fig. 12 Prediction uncertainty at various process designs: The inten-
sity of the heatmap encodes the width of the 90% highest density
interval of the predicted rate constant. This measure of uncertainty is
higher in regions of the parameter space where no experiments were
performed. In the IPTG dimension, the model inferred a short length-
scale, leading to a quick rise of uncertainty as the distance to a data
point increases (lower part). In the glucose feed rate dimension, the
lengthscale is large and no oscillation of the uncertainty interval is
observed (left and right parts)

bioreactor broth). The best tested process design was a
feed rate of 1.5 g L~'4~! and an IPTG concentration of 12
pM with 0.69 h translating to a volumetric activity of
1153 UmL™". In a previous study, NoCAR was produced
with an extremely low growth and expression temperature
of 15 °C in a batch process with complex medium in shake
flasks with a final volumetric activity of approximately
26 U mL~'[15]. The low temperature was chosen to avoid
the formation of inclusion bodies. Inclusion bodies are
aggregates of protein that can form when a heterologous
protein is expressed in E. coli. As inclusion bodies usually
do not show enzymatic activity, they are usually not the
desired product of protein expression. The risk of inclu-
sion body formation is correlated to big proteins that are
expressed fast in hosts that do not offer the proper environ-
ment for correct protein folding [11, 44, 45].

This shows that active NoCAR can be produced at a cul-
tivation temperature of 30 °C in defined medium. Several
factors might have aided the production of active NoCAR
in this study. The use of defined medium as opposed to
complex medium in previous studies might have reduced
inclusion body formation [11, 45]. Furthermore, the
tightly controlled pH in the stirred-tank bioreactors on a
mL-scale might have aided to reduce antibody formation
due to pH drift [36].

The oscillations in the two-dimensional uncertainty
shown in Fig. 11 and Fig. 12 are the result of the underlying
Gaussian process model that describes possible functions
Of $4esign dependence on the two process design parameters.
Fig. 13 shows posterior predictive samples of that Gauss-
ian process model, conditioned on the highest glucose feed
rate. In essence, Fig. 13 is a more detailed cross-section that
is marked by black lines in Fig. 11. Note that the GP sam-
ples are drawn with different lengthscales, hence some may
fluctuate more smoothly than others. Again, a more evenly
spread localization of experimentally tested process designs
should help to smoothen the prediction by providing more
information about the spatial dependence, at the expense of
higher uncertainty at individual process designs.

Our model found lower feed rates to be possibly ben-
eficial for specific activity (Fig. 10), even after taking
the resulting biomass concentration into account (rate
constant, Fig. 11). At the same time, the model is still
undecided about the lengthscale of IPTG dependency
(Fig. 13, inset plot). At short lengthscale the functions
drawn from the Gaussian process are rougher (fluctuate
faster) which widens the uncertainty faster as the distance
to a tested process design increases. With long length-
scale on the other hand the functions are smoother, and
fluctuate less between the designs. The Gaussian process
in Fig. 11 makes an uncertain extrapolation of this trend
towards lower feed rates where the density of observations
was much lower. Counterintuitively this leads to a vague
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Fig. 13 Cross-section rate constant prediction at highest glucose feed
rate: Shown is the conditional posterior predictive distribution of the
rate constant KPI in dependence on the IPTG concentration. Thin
lines are samples from the distribution, and the red/green/blue lines
highlight randomly picked examples with their maximum marked by

logio(Glucose feed rate [g L™ h™1])
Probability(best Kgesign) [—]
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Fig. 14 Probability landscape of the rate constant optimum within the
investigated design space: For each process design in a 50x50 grid
of process parameters the probabilistic prediction of the rate constant
metric was translated into a probability. The intensity of the pixel
indicates the probability that this particular design is the best among
all 2500 combinations. Most probability is concentrated in a region
of low glucose feed rates combined with high IPTG concentrations.
The red circle marks the combination that was predicted to be optimal
with the highest probability

prediction that the optimal process design could be at
lower feed rates and moderately high IPTG concentration.

The probability map (Fig. 14) is a more direct visualiza-
tion of this prediction. The overlaid coordinates of experi-
mentally tested process parameters show that this part of the
parameter spaces has not been extensively investigated yet.
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the circle. The bar plot is the posterior probability that the maximum
rate constant lies at certain IPTG concentrations, conditioned on the
highest glucose feed rate. Every thin line was sampled with a differ-
ent lengthscale from the posterior distribution shown in the inset plot

Conclusion

The automated cascade of stirred-tank bioreactors
enabled screening of 42 different combinations of inducer
concentration and feed rate during protein expression of
E. coli NoCAR in a scalable bioreactor setup. A total of
192 bioreactor runs were performed during four weeks,
showing the high productivity of miniaturized, automated
and digitized parallel bioreactors. The new automated
biotransformation procedure at the end of each process
enabled the investigation of the enzymatic activity of each
expression condition without manual intervention.

Due to the sophisticated mechanistic modelling based
on Bayesian statistics, the enzymatic activity was estimated
without the need of cell separation. This makes automation
much simpler, because cell separation with automated liquid
handling systems is costly and requires a lot of space in the
working area of the robot. Furthermore, the probabilistic
analysis opens the door for iterative Bayesian optimization
that can further accelerate the identification of the optimal
process conditions, while reducing the needed experimental
effort.

At the optimal investigated expression conditions, an
activity of 1153 U mL~" was estimated with a 90 % credible
interval of [992,1321] U mL~". Taking the uncertainty into
account, this is about 38 to 50-fold higher than the highest
published data for the enzyme under study. It would be inter-
esting for further studies to investigate parameter combina-
tions that are predicted to be beneficial by the model.

The combination of cultivation at L- and mL-scale is a
rather generic experimental strategy to produce biomass for
whole-cell biocatalysis under varying expression conditions.
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Similarly, the technique to reproduce the structure of an
experimental process in a probabilistic model can be trans-
ferred to other bioprocess characterization workflows. For
example, one could easily adopt the workflow to optimize
other expression conditions such as pH or medium com-
position, by modifying the Gaussian process model for the
S desian variable to take other process design parameters as its
input. Likewise, the biotransformation reaction of interest
could be replaced by another first-order reaction. Also higher
order reaction kinetics could be incorporated by replacing
the 1st order reaction with, for example an ODE model,
that describes Michaelis—Menten, Hill- or cascade enzyme
kinetics. We conclude that conducting biotransformations
at higher throughput and analyzing the data with Bayesian
modeling is a versatile and promising approach to accelerate
the development of biocatalytic processes.
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