000911598 001__ 911598 000911598 005__ 20240712100951.0 000911598 0247_ $$2doi$$a10.5194/gmd-2022-118 000911598 0247_ $$2Handle$$a2128/32685 000911598 037__ $$aFZJ-2022-04857 000911598 041__ $$aEnglish 000911598 082__ $$a910 000911598 1001_ $$0P:(DE-Juel1)164851$$aLu, Yen-Sen$$b0$$eCorresponding author 000911598 245__ $$aOptimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0 000911598 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2022 000911598 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1669038376_14265 000911598 3367_ $$2ORCID$$aWORKING_PAPER 000911598 3367_ $$028$$2EndNote$$aElectronic Article 000911598 3367_ $$2DRIVER$$apreprint 000911598 3367_ $$2BibTeX$$aARTICLE 000911598 3367_ $$2DataCite$$aOutput Types/Working Paper 000911598 520__ $$aIn this study, we present an expansive sensitivity analysis of physics configurations for cloud cover using the Weather Forecasting and Research Model (WRF V3.7.1) on the European domain. The experiments utilize the meteorological part of a large ensemble framework known as the Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS-met). The experiments first seek the best deterministic WRF physics configuration by simulating over 1,000 combinations of microphysics, cumulus parameterization, planetary boundary layer physics (PBL), surface layer physics, radiation scheme and land surface models. The results on six different test days are compared to CMSAF satellite images from EUMETSAT. We then selectively conduct stochastic simulations to assess the best choice for ensemble forecasts. The results indicate a high variability in terms of physics and parameterization. The combination of Goddard, WSM6, or CAM5.1 microphysics with MYNN3 or ACM2 PBL exhibited the best performance in Europe. For probabilistic simulations, the combination of WSM6 and SBU–YL microphysics with MYNN2 and MYNN3 showed the best performance, capturing the cloud fraction and its percentiles with 32 ensemble members. This work also demonstrates the capability and performance of ESIAS-met for large ensemble simulations and sensitivity analysis. 000911598 536__ $$0G:(DE-HGF)POF4-2113$$a2113 - Future Weather and Extremes (POF4-211)$$cPOF4-211$$fPOF IV$$x0 000911598 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1 000911598 536__ $$0G:(EU-Grant)824158$$aEoCoE-II - Energy Oriented Center of Excellence : toward exascale for energy (824158)$$c824158$$fH2020-INFRAEDI-2018-1$$x2 000911598 588__ $$aDataset connected to CrossRef 000911598 7001_ $$0P:(DE-HGF)0$$aGood, Garrett$$b1 000911598 7001_ $$0P:(DE-Juel1)129194$$aElbern, Hendrik$$b2 000911598 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmd-2022-118$$tGeoscientific model development discussions$$x1991-9611$$y2022 000911598 8564_ $$uhttps://juser.fz-juelich.de/record/911598/files/Preprint.pdf$$yOpenAccess 000911598 909CO $$ooai:juser.fz-juelich.de:911598$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000911598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164851$$aForschungszentrum Jülich$$b0$$kFZJ 000911598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b2$$kFZJ 000911598 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2113$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0 000911598 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1 000911598 9141_ $$y2022 000911598 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000911598 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000911598 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10 000911598 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10 000911598 920__ $$lyes 000911598 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000911598 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000911598 9801_ $$aFullTexts 000911598 980__ $$apreprint 000911598 980__ $$aVDB 000911598 980__ $$aUNRESTRICTED 000911598 980__ $$aI:(DE-Juel1)IEK-8-20101013 000911598 980__ $$aI:(DE-Juel1)JSC-20090406 000911598 981__ $$aI:(DE-Juel1)ICE-3-20101013