001     911607
005     20230310131318.0
024 7 _ |a 2128/32750
|2 Handle
037 _ _ |a FZJ-2022-04866
041 _ _ |a English
100 1 _ |a Cordes, Jakob
|0 P:(DE-Juel1)187329
|b 0
|e Corresponding author
|u fzj
111 2 _ |a JMC 2022
|c Lyon
|d 2022-08-22 - 2022-08-26
|w France
245 _ _ |a Noise-induced breakdown in linear self-driven particle systems
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1669202054_4739
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c Universität zu Köln
520 _ _ |a Self-driven particle systems can describe many self-organized phenomena. Prominentexamples are oscillation, wave, lane, or band formations, among other swarming andcoordinated movements. Collective dynamics are classically understood in the literature of active matter as motility-induced phase separation using meta-stable non-linear in-teraction models. Critical settings of the parameters separate the disorder states from non-uniform dynamics describing macroscopic patterns and structures. We show in this contribution that noise effects can initiate the spontaneous formation of waves insingle-file motions of self-driven particles. In contrast to usual modeling approaches, no non-linear interaction mechanisms or phase transitions are necessary to coordinate the dynamics. The stochastic effects initiate the self-organization in the second order in a purely linear and ergodic framework. The coupling of the noise to a discrete gradient in space yields the emergence of stop-and-go waves, which we characterize using speed and spacing auto-correlation functions. Varying the characteristics of the noise allows for obtaining rich dynamics ranging from coupled dynamics and stable homogeneous dynamics to stop-and-go patterns with deterministic oscillating features.
536 _ _ |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|x 0
|f POF IV
536 _ _ |a DFG project 446168800 - Multi-Agent-Modellierung der Dynamik von dichten Fußgängermengen: Vorhersagen Verstehen (446168800)
|0 G:(GEPRIS)446168800
|c 446168800
|x 1
700 1 _ |a Tordeux, Antoine
|0 P:(DE-Juel1)159135
|b 1
700 1 _ |a Schadschneider, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rüdiger, Babara
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ugurcan, Baris
|0 P:(DE-HGF)0
|b 4
856 4 _ |u https://juser.fz-juelich.de/record/911607/files/Poster_JMC_Cordes.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911607
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187329
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21