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1. Collective dynamics by active particles
•Self-organized collective phenomenona in animal swarms, fish
schools, pedestrians, robots, colloids, bacteria, road traffic, ...

•Motility Induced Phase Separation: positive feedback between
aggregation and slowing down

•Moving bands in flocking models, Active Ising models, charged
colloids

•Succession of de- and acceleration: stop-and-go waves in
pedestrian, vehicular and bicycle traffic

2. Stop-and-Go: Deterministic Models
• Instability of the homogeneous configuration
•Phase transition & fine tuning of parameters, limit-cycle solu-
tion only for non-linear models

•E.g. Optimal-Velocity model ẍi = 1
τ (V (∆xi)− ẋi) linearly

stable for τ > 1/(2V ′)

Figure 1: Scheme for the considered system of N particles on a ring of length L.

3. Stop-and-Go: Stochastic Models
•The stochastic microscopic motion model is



dxi = [λ(∆xi − `) + zi]dt,
dzi = [γ(∆xi −∆xi+1)− βzi)]dt + σdWi,

(1)

where the Wi(t) are independent Wiener processes
•Purely linear, stochastic differential system: Minimal deter-
ministic part and stochastic Gaussian noise

•No instability, phase transition, or non-linearity needed for
phase separation → Noise Induced Stop-and-Go dynamics!
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Figure 2: Illustrative scheme for the modeling of stop-and-go dynamics with phase transition in the periodic
solution (a) and the noise-induced oscillating behavior (b).

4. Results
•The sufficient stability condition is

− βλ < 2γ < βλ (2)

•change dynamics from persisting waves (γ > 0; reaction rate),
to dissipating waves (γ < 0; anticipation rate)

•Under stability exactly solvable: the model is a Gaussian pro-
cess with a single stationary distribution

•Expectation tends to space-homogeneous solution E[X (t)]→
0 as t→∞

•Stop-and-Go waves as non-trivial fluctuations in co-variance
matrix Σ(∞)

•Linear stability can not ensure the absence of jams!

Figure 3: Examples of trajectories of 50 particles in stationary states for λ = 1, β = 0.2, and different values of
γ. The dynamics range from 2 by 2 coupled configurations as γ tends to γ1

c , homogeneous configurations for
moderated negative values for γ, to configurations with a single stop-and-go wave as γ tends to γ2

c . Note that
the trajectories with no noise (σ = 0) are systematically strictly homogeneous (i.e. parallel and equidistant).

Figure 4: Auto-correlation in time of a single vehicle in stationary state for different stable values for the
parameter γ = −0.1, 0.05, 0, 0.05, 0.1, 0.12 (the stability condition being γ1

c = −0.1 < γ < γ2
c ≈ 0.1285).

The autocorrelation functions oscillate, especially as γ tends to γ2
c . This attests for the presence of periodic

stop-and-go dynamics.
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