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1. Collective dynamics by active particles

» Self-organized collective phenomenona in animal swarms, fish
schools, pedestrians, robots, colloids, bacteria, road traffic, ...

» Motility Induced Phase Separation: positive feedback between
aggregation and slowing down

» Moving bands in flocking models, Active Ising models, charged
colloids

 Succession of de- and acceleration: stop-and-go waves in

pedestrian, vehicular and bicycle traffic

2. Stop-and-Go: Deterministic Models

» Instability of the homogeneous configuration

» Phase transition & fine tuning of parameters, limit-cycle solu-
tion only for non-linear models

« E.g. Optimal-Velocity model &, i(V(Aa:'Z) — @;) linearly

stable for 7 > 1/(2V/)
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Figure 1: Scheme for the considered system of NV particles on a ring of length L.

3. Stop-and-Go: Stochastic Models

 [he stochastic microscopic motion model is

dr; = | MAx; — ) + z;|dt, 1)
dz; = [V(Azx; — Axiqq) — Bz)|dt + odW;,

where the W;(t) are independent Wiener processes

 Purely linear, stochastic differential system: Minimal deter-
ministic part and stochastic Gaussian noise

» No instability, phase transition, or non-linearity needed for
phase separation — Noise Induced Stop-and-Go dynamics!

Noise effect

Damped oscillation continuously maintained
by the perturbations

Phase transition

Undamped oscillation activated by
the initial perturbation
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Figure 2: lllustrative scheme for the modeling of stop-and-go dynamics with phase transition in the periodic
solution (a) and the noise-induced oscillating behavior (b).
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4. Results

» The sufficient stability condition is
— BA < 27 < BA (2)

» change dynamics from persisting waves (v > 0; reaction rate),
to dissipating waves (v < 0; anticipation rate)

» Under stability exactly solvable: the model is a Gaussian pro-
cess with a single stationary distribution

» Expectation tends to space-homogeneous solution E|X (t)] —
0ast — o<

 Stop-and-Go waves as non-trivial fluctuations in co-variance
matrix > (o0)

o Linear stability can not ensure the absence of jams!

Figure 3: Examples of trajectories of 50 particles in stationary states for A = 1, 5 = 0.2, and different values of
~v. The dynamics range from 2 by 2 coupled configurations as vy tends to %1, homogeneous configurations for
moderated negative values for -, to configurations with a single stop-and-go wave as v tends to 72. Note that
the trajectories with no noise (o = () are systematically strictly homogeneous (i.e. parallel and equidistant).
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Figure 4: Auto-correlation in time of a single vehicle in stationary state for different stable values for the
parameter v = —0.1, 0.05, 0, 0.05, 0.1, 0.12 (the stability condition being 7% = —01<~v< fyg ~ (.1285).
The autocorrelation functions oscillate, especially as v tends to 72. This attests for the presence of periodic
stop-and-go dynamics.
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