000911640 001__ 911640
000911640 005__ 20230228125129.0
000911640 0247_ $$2doi$$a10.3390/ijms232214198
000911640 0247_ $$2ISSN$$a1422-0067
000911640 0247_ $$2ISSN$$a1661-6596
000911640 0247_ $$2Handle$$a2128/32772
000911640 0247_ $$2pmid$$a36430678
000911640 0247_ $$2WOS$$aWOS:000887546500001
000911640 037__ $$aFZJ-2022-04896
000911640 082__ $$a540
000911640 1001_ $$0P:(DE-Juel1)179461$$aMohanakumar, Shilpa$$b0
000911640 245__ $$aComplementary Experimental Methods to Obtain Thermodynamic Parameters of Protein Ligand Systems
000911640 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2022
000911640 3367_ $$2DRIVER$$aarticle
000911640 3367_ $$2DataCite$$aOutput Types/Journal article
000911640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669207623_4739
000911640 3367_ $$2BibTeX$$aARTICLE
000911640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911640 3367_ $$00$$2EndNote$$aJournal Article
000911640 520__ $$aIn recent years, thermophoresis has emerged as a promising tool for quantifying biomolecular interactions. The underlying microscopic physical effect is still not understood, but often attributed to changes in the hydration layer once the binding occurs. To gain deeper insight, we investigate whether non-equilibrium coefficients can be related to equilibrium properties. Therefore, we compare thermophoretic data measured by thermal diffusion forced Rayleigh scattering (TDFRS) (which is a non-equilibrium process) with thermodynamic data obtained by isothermal titration calorimetry (ITC) (which is an equilibrium process). As a reference system, we studied the chelation reaction between ethylenediaminetetraacetic acid (EDTA) and calcium chloride (CaCl2) to relate the thermophoretic behavior quantified by the Soret coefficient ST to the Gibb’s free energy ΔG determined in the ITC experiment using an expression proposed by Eastman. Finally, we have studied the binding of the protein Bovine Carbonic Anhydrase I (BCA I) to two different benzenesulfonamide derivatives: 4-fluorobenzenesulfonamide (4FBS) and pentafluorobenzenesulfonamide (PFBS). For all three systems, we find that the Gibb’s free energies calculated from ST agree with ΔG from the ITC experiment. In addition, we also investigate the influence of fluorescent labeling, which allows measurements in a thermophoretic microfluidic cell. Re-examination of the fluorescently labeled system using ITC showed a strong influence of the dye on the binding behavior.
000911640 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000911640 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911640 7001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b1
000911640 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2$$eCorresponding author
000911640 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms232214198$$gVol. 23, no. 22, p. 14198 -$$n22$$p14198 -$$tInternational journal of molecular sciences$$v23$$x1422-0067$$y2022
000911640 8564_ $$uhttps://juser.fz-juelich.de/record/911640/files/ijms-23-14198.pdf$$yOpenAccess
000911640 8767_ $$d2022-11-22$$eAPC$$jZahlung erfolgt
000911640 909CO $$ooai:juser.fz-juelich.de:911640$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179461$$aForschungszentrum Jülich$$b0$$kFZJ
000911640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b1$$kFZJ
000911640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ
000911640 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000911640 9141_ $$y2022
000911640 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000911640 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911640 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000911640 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000911640 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911640 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000911640 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-04T08:27:04Z
000911640 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-04T08:27:04Z
000911640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-04T08:27:04Z
000911640 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2021$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000911640 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J MOL SCI : 2021$$d2022-11-25
000911640 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911640 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911640 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911640 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000911640 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000911640 9801_ $$aFullTexts
000911640 980__ $$ajournal
000911640 980__ $$aVDB
000911640 980__ $$aUNRESTRICTED
000911640 980__ $$aI:(DE-Juel1)IBI-4-20200312
000911640 980__ $$aAPC