000911669 001__ 911669
000911669 005__ 20250414120453.0
000911669 0247_ $$2doi$$a10.1162/netn_a_00275
000911669 0247_ $$2Handle$$a2128/33218
000911669 0247_ $$2pmid$$a37339286
000911669 0247_ $$2WOS$$aWOS:001444932400007
000911669 037__ $$aFZJ-2022-04924
000911669 082__ $$a610
000911669 1001_ $$0P:(DE-Juel1)180200$$aKrämer, Camilla$$b0
000911669 245__ $$aClassification and prediction of cognitive performance differences in older age based on brain network patterns using a machine learning approach
000911669 260__ $$aCambridge, MA$$bThe MIT Press$$c2023
000911669 3367_ $$2DRIVER$$aarticle
000911669 3367_ $$2DataCite$$aOutput Types/Journal article
000911669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688023394_23817
000911669 3367_ $$2BibTeX$$aARTICLE
000911669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911669 3367_ $$00$$2EndNote$$aJournal Article
000911669 520__ $$aAge-related cognitive decline varies greatly in healthy older adults, which may partly be explained by differences in the functional architecture of brain networks. Resting-state functional connectivity (RSFC) derived network parameters as widely used markers describing this architecture have even been successfully used to support diagnosis of neurodegenerative diseases. The current study aimed at examining whether these parameters may also be useful in classifying and predicting cognitive performance differences in the normally aging brain by using machine learning (ML). Classifiability and predictability of global and domain-specific cognitive performance differences from nodal and network-level RSFC strength measures were examined in healthy older adults from the 1000BRAINS study (age range: 55–85 years). ML performance was systematically evaluated across different analytic choices in a robust cross-validation scheme. Across these analyses, classification performance did not exceed 60% accuracy for global and domain-specific cognition. Prediction performance was equally low with high mean absolute errors (MAEs ≥ 0.75) and low to none explained variance (R2 ≤ 0.07) for different cognitive targets, feature sets, and pipeline configurations. Current results highlight limited potential of functional network parameters to serve as sole biomarker for cognitive aging and emphasize that predicting cognition from functional network patterns may be challenging.
000911669 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000911669 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000911669 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
000911669 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911669 7001_ $$0P:(DE-Juel1)171557$$aStumme, Johanna$$b1$$ufzj
000911669 7001_ $$0P:(DE-Juel1)191499$$ada Costa Campos, Lucas$$b2
000911669 7001_ $$0P:(DE-HGF)0$$aRubbert, Christian$$b3
000911669 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b4
000911669 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b5$$ufzj
000911669 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b6$$eCorresponding author$$ufzj
000911669 773__ $$0PERI:(DE-600)2900481-0$$a10.1162/netn_a_00275$$gp. 1 - 27$$n1$$p122–147$$tNetwork neuroscience$$v7$$x2472-1751$$y2023
000911669 8564_ $$uhttps://juser.fz-juelich.de/record/911669/files/Invoice_APC600344887.pdf
000911669 8564_ $$uhttps://juser.fz-juelich.de/record/911669/files/K%C3%A4rmer_et%20al_Network%20Neuroscience_2022.pdf$$yOpenAccess
000911669 8767_ $$8APC600344887$$92022-08-30$$d2022-12-22$$eAPC$$jZahlung erfolgt$$zFZJ-2022-03175; USD 2250,-
000911669 909CO $$ooai:juser.fz-juelich.de:911669$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180200$$aForschungszentrum Jülich$$b0$$kFZJ
000911669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171557$$aForschungszentrum Jülich$$b1$$kFZJ
000911669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b5$$kFZJ
000911669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b6$$kFZJ
000911669 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000911669 9141_ $$y2022
000911669 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911669 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911669 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-08
000911669 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-08
000911669 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911669 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-08
000911669 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-02-09T16:05:29Z
000911669 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-02-09T16:05:29Z
000911669 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-02-09T16:05:29Z
000911669 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNETW NEUROSCI : 2022$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-27
000911669 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000911669 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000911669 980__ $$ajournal
000911669 980__ $$aVDB
000911669 980__ $$aI:(DE-Juel1)INM-1-20090406
000911669 980__ $$aAPC
000911669 980__ $$aUNRESTRICTED
000911669 9801_ $$aAPC
000911669 9801_ $$aFullTexts