001     911669
005     20250414120453.0
024 7 _ |a 10.1162/netn_a_00275
|2 doi
024 7 _ |a 2128/33218
|2 Handle
024 7 _ |a 37339286
|2 pmid
024 7 _ |a WOS:001444932400007
|2 WOS
037 _ _ |a FZJ-2022-04924
082 _ _ |a 610
100 1 _ |a Krämer, Camilla
|0 P:(DE-Juel1)180200
|b 0
245 _ _ |a Classification and prediction of cognitive performance differences in older age based on brain network patterns using a machine learning approach
260 _ _ |a Cambridge, MA
|c 2023
|b The MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688023394_23817
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Age-related cognitive decline varies greatly in healthy older adults, which may partly be explained by differences in the functional architecture of brain networks. Resting-state functional connectivity (RSFC) derived network parameters as widely used markers describing this architecture have even been successfully used to support diagnosis of neurodegenerative diseases. The current study aimed at examining whether these parameters may also be useful in classifying and predicting cognitive performance differences in the normally aging brain by using machine learning (ML). Classifiability and predictability of global and domain-specific cognitive performance differences from nodal and network-level RSFC strength measures were examined in healthy older adults from the 1000BRAINS study (age range: 55–85 years). ML performance was systematically evaluated across different analytic choices in a robust cross-validation scheme. Across these analyses, classification performance did not exceed 60% accuracy for global and domain-specific cognition. Prediction performance was equally low with high mean absolute errors (MAEs ≥ 0.75) and low to none explained variance (R2 ≤ 0.07) for different cognitive targets, feature sets, and pipeline configurations. Current results highlight limited potential of functional network parameters to serve as sole biomarker for cognitive aging and emphasize that predicting cognition from functional network patterns may be challenging.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stumme, Johanna
|0 P:(DE-Juel1)171557
|b 1
|u fzj
700 1 _ |a da Costa Campos, Lucas
|0 P:(DE-Juel1)191499
|b 2
700 1 _ |a Rubbert, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 4
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 5
|u fzj
700 1 _ |a Jockwitz, Christiane
|0 P:(DE-Juel1)145386
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1162/netn_a_00275
|g p. 1 - 27
|0 PERI:(DE-600)2900481-0
|n 1
|p 122–147
|t Network neuroscience
|v 7
|y 2023
|x 2472-1751
856 4 _ |u https://juser.fz-juelich.de/record/911669/files/Invoice_APC600344887.pdf
856 4 _ |u https://juser.fz-juelich.de/record/911669/files/K%C3%A4rmer_et%20al_Network%20Neuroscience_2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911669
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180200
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171557
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145386
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-08
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-02-09T16:05:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-02-09T16:05:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-02-09T16:05:29Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NETW NEUROSCI : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21