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BACKGROUND: Older adults show a high variability in cognitive performance that cannot be explained by aging alone. Although research has linked
air pollution and noise to cognitive impairment and structural brain alterations, the potential impact of air pollution and noise on functional brain orga-
nization is unknown.
OBJECTIVE: This study examined the associations between long-term air pollution and traffic noise with measures of functional brain organization in
older adults. We hypothesize that exposures to high air pollution and noise levels are associated with age-like changes in functional brain organiza-
tion, shown by less segregated brain networks.

METHODS: Data from 574 participants (44.1% female, 56–85 years of age) in the German 1000BRAINS study (2011–2015) were analyzed. Exposure
to particulate matter (PM10, PM2:5, and PM2:5 absorbance), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) was estimated
applying land-use regression and chemistry transport models. Noise exposures were assessed as weighted 24-h (Lden) and nighttime (Lnight) means.
Functional brain organization of seven established brain networks (visual, sensorimotor, dorsal and ventral attention, limbic, frontoparietal and default
network) was assessed using resting-state functional brain imaging data. To assess functional brain organization, we determined the degree of segre-
gation between networks by comparing the strength of functional connections within and between networks. We estimated associations between air
pollution and noise exposure with network segregation, applying multiple linear regression models adjusted for age, sex, socioeconomic status, and
lifestyle variables.
RESULTS: Overall, small associations of high exposures with lesser segregated networks were visible. For the sensorimotor networks, we observed
small associations between high air pollution and noise and lower network segregation, which had a similar effect size as a 1-y increase in age [e.g.,
in sensorimotor network, −0:006 (95% CI: −0:021, 0.009) per 0.3 × 10−5=m increase in PM2:5 absorbance and −0:004 (95% CI: −0:006, −0:002)
per 1-y age increase].
CONCLUSION: High exposure to air pollution and noise was associated with less segregated functional brain networks. https://doi.org/10.1289/
EHP9737

Introduction
Every day, people are involuntarily exposed to a harmful mix-
ture of gases and particles called air pollution that increases
their risk for cardiovascular and respiratory diseases (Thurston
et al. 2017). Air pollution may also affect the brain by inducing
oxidative stress and chronic neuroinflammation, possibly lead-
ing to impaired cognition (as reviewed by Allen et al. 2017) and
increasing incidence of neuronal diseases (Casanova et al.
2016; Jung et al. 2015; Peters et al. 2019). These observations
lead to the question whether alterations in brain structure might
explain the reported impaired cognitive performance. Anatomical
neuroimaging studies have shown associations between high air
pollution and lower brain volume (Casanova et al. 2016; Chen
et al. 2015; Nußbaum et al. 2020; Power et al. 2011; Wilker et al.

2015). Given that cognitive decline and reduced brain volume are
also characteristic of normal neuronal aging, it has been suggested
that air pollution may accelerate brain aging (Clifford et al. 2016;
Fougère et al. 2015).

Chronic ambient noise is another growing environmental
health problem, stemming from similar air pollution sources
(e.g., traffic, transport, industry) (WHO 2011). Chronic noise can
lead to annoyance, sleep disturbance, and stress, arousing the au-
tonomous nervous and endocrine system, thereby leading to
adverse health outcomes, most prominently cardiovascular dis-
eases (Basner et al. 2014; WHO 2011). In addition, research has
linked chronic noise to impaired cognitive function (Fuks et al.
2019; Jafari et al. 2019; Tzivian et al. 2016) and possible changes
in brain structure (Cheng et al. 2019; Nußbaum et al. 2020) in
adults. However, the precise mechanisms by which noise may
affect the brain remain largely unknown.

Besides morphological changes, neurological studies on the
aging brain also showed changes on the level of functional brain
organization related to impaired cognitive function (Betzel et al.
2014; Ramanoël et al. 2018; Armstrong et al. 2020; Stumme et al.
2020). Although brain structure and functional organization are
different aspects of the brain that require different analytical
methods, they are both important to understand how environmen-
tal exposures may affect cognitive function. Therefore, to gain a
better understanding of the complex relationship between environ-
mental exposures, brain structure, and cognitive function, studies
on how air pollution and noise may influence functional brain or-
ganization in the whole brain are needed. The brain is a complex
system consisting of different brain regions interconnected with
each other for information processing (Biswal et al. 2010).
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Functional connectivity (FC) describes the strength of connec-
tivity between these different brain regions (Friston et al. 1996).
Using functional magnetic resonance imaging (fMRI) during a
resting state (Biswal et al. 1995), the brain can be grouped into
seven functionally specialized networks (i.e., visual, sensorimo-
tor, dorsal and ventral attention, limbic, frontoparietal, default
network) (Schaefer et al. 2018). Within each network, brain
regions are highly interconnected, whereas there are few con-
nections between brain regions from different networks (Bassett
and Bullmore 2006) (Figure 1A). Therefore, functional brain or-
ganization is characterized by a balance between densely connected
regions within networks together with few long-range connections
between more remote regions and networks (Wig 2017).

From childhood to adulthood, the brain undergoes various
age-related changes in FC. Although there are many open ques-
tions regarding the maturation of functional networks, it is
believed that networks are already to some extent established in
infants, showing a coarser network structure compared with
adults (Grayson and Fair 2017). With age, this network structure
is refined with increasing connections between functionally
related brain regions and the strengthening of long-range connec-
tions between functionally related, but anatomically distant, brain
regions (Grayson and Fair 2017). Thereby a pattern of segrega-
tion (decrease in connectivity strength) between anatomically
close brain regions and integration (increase in connectivity
strength) between functionally related brain regions emerges, and
an organized, widespread system of networks is formed (Bassett
and Bullmore 2006) (Figure 1B).

Neuroimaging studies investigating the association between
age and functional brain organization in healthy adults reported
decreasing segregation with age in various networks (Betzel et al.
2014; Chan et al. 2014; Geerligs et al. 2015; Malagurski et al.
2020; Stumme et al. 2020). Furthermore, decreasing segregation

was also linked to declining cognitive performance in adults,
such as poor memory function (Chan et al. 2014), reduced learn-
ing rates (Iordan et al. 2018), and low processing speed (Ng et al.
2016), supporting the suggestion that preserving segregated brain
networks with age is important for good cognitive functioning.

One study investigated the impact of indoor household
incense burning on cognitive functions and brain health in older
adults (Wong et al. 2020). They reported associations between
regular incense burning with poorer cognitive performance and
decreased FC within regions of the default mode network. Other
studies exploring the impact of environmental pollutants on func-
tional brain organization have only been conducted in children or
adolescents and reported slower functional brain maturation
(Pujol et al. 2016) or lower FC strength within brain regions for
emotion processing and regulation (de Water et al. 2018), as well
as for motor control (de Water et al. 2019). However, the brain is
not susceptible to environmental factors only during early brain
development, but also in later life when progressive neurocogni-
tive degeneration starts (Park and Reuter-Lorenz 2009; Wig
2017) and compensatory mechanisms begin to falter owing to
aging (Grossman 2014). Although average cognitive performance
declines with age, this is not the case for all older adults, and
there is a large variability among older adults that has yet to be
explained (Nelson and Dannefer 1992). To our knowledge, there
have been no studies on long-term outdoor air pollution and func-
tional brain organization in older adults.

Related to noise, few studies have investigated the impact of
environmental noise on functional organization in the adult
brain, and these point to a less segregated network structure for
high levels of short-term ambient noise exposure (Zou et al.
2019) and neuronal loss together with reduced neuronal activity
under chronic noise and stress (Cheng et al. 2019). Because air
pollution and environmental noise often occur at the same time

Figure 1. Functional connectivity metrics and segregation vs. integration. (A) Graph representing intra- and internetwork connectivity within the brain. Dashed
lines represent brain networks, in which the black dots (nodes) represent brain regions. Two brain regions (dots) are functionally connected if their BOLD-
signals are temporally correlated, which is displayed by lines (edges) connecting these two dots. The dotted lines between nodes reflect intra-network connectiv-
ity (i.e., links between regions belonging to one network). The solid black lines represent internetwork connectivity (i.e., links connecting regions of one network
to regions of other networks. (B) Depiction of brain network segregation and integration. On the left side, segregation of networks is high with low integration
(i.e., few links between networks) such that networks are easily distinguishable from each other. On the right side, more connections between networks are built,
resulting in more integrated brain networks with less segregation, making networks less distinguishable. Note: BOLD, blood–oxygen level dependent.

Environmental Health Perspectives 097007-2 130(9) September 2022



owing to their common sources (e.g., motorized traffic), it is im-
portant to consider both exposures simultaneously, especially if
they may have synergistic or antagonistic effects.

In this population-based 1000BRAINS study, we therefore
aimed to examine whether long-term exposure to ambient air pol-
lution and road traffic noise are associated with global functional
brain organization by creating whole-brain functional networks
from resting-state MRI data in a cohort of people 55–85 years of
age. Based on our prior work showing associations of air pollu-
tion with age-like morphological changes in the brain (Nußbaum
et al. 2020), we hypothesized that global functional brain organi-
zation shows age-like alterations, namely a decrease in segrega-
tion index, under high exposure to air pollution and noise. With
this study, we want to contribute to the understanding of how
ubiquitous external factors, such as air pollution and noise, act on
brain function, possibly mediating the already observed adverse
effects on cognition.

Materials and Methods

Study Design
This analysis was conducted using data from participants of the
1000BRAINS study (age range: 56–85 y), a cohort study examin-
ing interindividual variability of structure, function, and connectiv-
ity in the aging brain in relation to genetic and environmental
influencing factors (Caspers et al. 2014). For the 1000BRAINS
study, participants from the German Heinz Nixdorf Recall (HNR)
study and the HNR MultiGeneration Study were recruited (Figure
S1). This analysis includes only participants recruited from the
HNR study because air pollution and noise exposure data were not
available for participants from the HNR MultiGeneration study.
The HNR study is a prospective cohort study of randomly selected
men and women living in three adjacent cities (Bochum, Essen,
and Mülheim) in the densely populated Ruhr area (Schmermund
et al. 2002). Between December 2000 andAugust 2003, 4,814 peo-
ple (age range: 45–75 y) attended the baseline examination, where
data from self-administered questionnaires, face-to-face interviews
along with anthropometric measurements, and laboratory tests were
collected. A 5-y follow-up examination was conducted between
2006 and 2008 (n=4,157), with repeated assessments of medical
condition and risk factor status. HNR participants attending the 10-y
follow-up (2011–2015; n=3,087) were invited to participate in the
1000BRAINS study. Participants had to be physically able and have
no medical contraindications to undergo MRI. Each participant
underwent MRI scans along with neuropsychological and motor
testing (Caspers et al. 2014). Compliance with prompts duringMRI
was assessed by post-MRI questionnaires. For this analysis, eligible
functional MRI data from 685 participants were available. Both the
HNR and 1000BRAINS studywere approved by the ethics commit-
tee of the University Hospital Essen. Participants gave informed
consent and all study procedures complied with the Declaration of
Helsinki (WMA2013).

Air Pollution. To model point-specific residential long-term
exposure concentrations of particulate matter (PM) of aerody-
namic diameter of ≤2:5 lm (PM2:5), ≤10 lm (PM10), and soot
[PM2:5 absorbance (PM2:5abs)], as well as nitrogen dioxide (NO2),
we used the European Study of Cohorts for Air Pollution Effects
land-use regression (ESCAPE-LUR) model with region-specific
land use data. For detailed description of the model, see Beelen
et al. (2007). In short, PM was monitored at 20 sites and nitrogen
oxides at 40 sites in the Ruhr area in three different 2-wk periods
between October 2008 and October 2009 to reflect different sea-
sons (Beelen et al. 2013; Eeftens et al. 2012). The LUR model
was created using annual averages of measured pollutant concen-
trations from background and traffic-related monitoring sites and

predictor variables from Europe-wide and local Geographic
Information System databases. To model long-term exposure,
participants were assigned point-specific exposure concentrations
based on their address at HNR baseline examination (2000–
2003), ∼ 10 y prior to their 1000BRAINS examination.

In addition, we estimated participants’ exposure to accumula-
tion mode particle number concentration (PNAM), a measure of
quasi-ultrafine particles, using the validated, spatiotemporal,
three-dimensional EURopean Air Pollution Dispersion (EURAD)
model (Büns et al. 2012; Hass et al. 1993; Memmesheimer et al.
2004). The multilayer model simulates transport, chemical trans-
formation, and deposition of tropospheric constituents. Ambient
air concentrations were assigned to North Rhine-Westphalia and
the Ruhr area using a sequential nesting grid of 1 km2 (Büns et al.
2012). The long-term exposure was calculated as average con-
centration from 2001 to 2003 and assigned to each participant
according to the 1-km2 grid in which they lived at the time of the
HNR baseline.

Traffic Noise. Long-term traffic noise was modeled at
façade points according to the European Directive 2002/49/EC
(European Commission 2002) as weighted 24-h (Lden) and
nighttime (2200–0600 hours) mean noise (Lnight) for the year
2006. Individual residential exposures were assigned using the
maximum noise value in a 10-m buffer around each partici-
pant’s HNR baseline address in 2000–2003. Based on the
assumption that mean noise levels have remained mostly con-
stant over time in regard to spatial distribution and exposure
level in the HNR study area, these noise exposures reflect long-
term exposure. In addition, we examined indoor noise during
the daytime (In-Lden) and at night (In-Lnight), derived from out-
door noise levels, and took into account noise-reducing factors,
such as room orientation and noise shielding (Foraster et al.
2014; Ohlwein et al. 2019).

Residential Traffic Density. To estimate exposure to traffic on
a small spatial scale, we used the distance (in meters) from the HNR
baseline home address to the nearest high-traffic roads (Disttrafroad),
defined as roads with a traffic count of >26,000 vehicles/d, catego-
rized into three groups (<100 m, 100–200 m, >200 m). The neces-
sary data was acquired from the State Office for Nature, Environment
andConsumer Protection ofNorthRhine-Westphalia.

Image Acquisition and Image Preprocessing
Imaging was performed using a 3T Siemens Tim-TRIO magnet
resonance scanner with a 32-channel head coil. For resting-state
fMRI, 300 functional images were acquired using a gradient–
echo planar imaging sequence (36 slices, slice thickness = 3:1 mm,
repetition time= 2,200ms, echo time= 30ms, field of view=200×
200mm2, voxel resolution 3:1× 3:1× 3:1mm3) (Caspers et al. 2014).
Resting-state fMRI scans of 11-min duration were performed while
eyes were closed, light switched off, and with the instruction to let
the mind wander without thinking of anything in particular and not
to fall asleep. A post-scan debriefing was performed to verify com-
pliancewith these instructions.

In the preprocessing, the first four gradient–echo planar imag-
ing scans were removed for each participant. A two-pass proce-
dure was applied to corrected functional images for head
movements [Statistical Parametric Mapping 12 (Friston et al.
2007)]. In the first pass, all scans were aligned to the first image. In
the second pass, an average image was estimated using affine regis-
tration, and all images were then aligned to the average image as a
reference. To normalize all images to the standard Montreal
Neurological Institute (MNI) 152 template (Holmes et al. 1998),
the unified segmentation approach (Ashburner and Friston 2005)
was used. Compared with the often-applied normalization based on
T1 weighted images, the unified segmentation approach increases
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accuracies of registration (Calhoun et al. 2017; Dohmatob et al.
2018). To minimize the impact of motion artifacts on measure-
ments of FC, recent findings recommend a combined use of inde-
pendent component analysis (ICA)-based Automatic Removal Of
Motion Artifacts (ICA-AROMA) (Pruim et al. 2015) with global
signal regression (Burgess et al. 2016; Ciric et al. 2017). Therefore,
the present study included both AROMA and global signal regres-
sion. Finally, all resting-state fMRI images were bandpass filtered
(0.01–0.1 Hz).

Resting-State FC. To explore the brain’s global intrinsic func-
tional organization, we used resting-state fMRI data available in
the 1000BRAINS study. Because resting-state fMRI allows indi-
rect measurement of neuronal activity at rest (task-negative state),
it is possible to analyze and visualize interactions between regions
across the whole brain, instead of only specific brain regions as in
task-based fMRI. The resting-state fMRI depicts low frequency
changes in the blood–oxygen level dependent (BOLD) signals,
which arise from changes in blood flow due to an increasing neuro-
nal metabolism resulting from neuronal activity (Fox and Raichle
2007). Functionally related brain regions are synchronously acti-
vated and therefore show a contemporaneous increase in neuronal
metabolism. This FC between two brain regions can then be meas-
ured by the temporal correlation of the BOLD signals of both brain
regions (Biswal et al. 1995; Fox and Raichle 2007; Margulies et al.
2007; Smith et al. 2009) (Figure 1A). In general, regions with high
values of FC (i.e., high temporal correlations of their BOLD sig-
nals) are grouped into large-scale functional networks called
resting-state networks (Damoiseaux et al. 2006; Schaefer et al.
2018; Yeo et al. 2011).

To define large-scale brain networks, we used Schaefer’s cer-
ebral cortex parcellation with 400 distinct brain regions parti-
tioned into seven large-scale networks: visual, sensorimotor,
dorsal and ventral attention, limbic, frontoparietal, and default
network (Schaefer et al. 2018). To calculate FC for these large-
scale brain networks, we used a graph–theory approach, where
functional brain networks are graphically represented by nodes
(i.e., brain regions) and edges (i.e., connections between two
brain regions; Figure 1A) (Biswal et al. 2010; Bullmore and
Sporns 2009, 2012; Rubinov and Sporns 2010), allowing FC
within regions belonging to one network and FC between regions
of different networks to be assessed.

To estimate FC between all predefined 400 brain regions, for
each brain region a BOLD mean time series over 300 time points
was extracted from the preprocessed fMRI data for each of the
400 brain regions (i.e., nodes). Next, correlations between these
400 BOLD mean times series were calculated using Pearson’s
product-moment correlation, resulting in a 400× 400 (node-to-
node) correlation matrix (Biswal et al. 1995). Then, these correla-
tions were converted into z-values using Fisher’s equation
(Fisher 1915) to estimate three FC metrics.

To estimate the strength of FC within each network, intra-
network FC was calculated as the mean z-transformed FC value
between all pairs of nodes belonging to the same network (�zintra)
(Figure 1A, dotted lines) between nodes of one network).
Internetwork FC, which quantifies how strongly a network is con-
nected to all other networks, was calculated as the mean z-trans-
formed FC value from one network to all other networks (�zinter)
(Figure 1A, solid lines). To assess the relation between intra- and
internetwork FC in one quantity, we calculated a ratio of intra- and
internetwork FC called the segregation index (Chan et al. 2014):

segregation index ¼ �zintra −�zinter
�zintra

:

A segregation index of >0 indicates a more segregated network,
with larger connections within the network (high intra-network FC)

compared with its connections to all other networks (low internet-
work FC). Negative values express higher brain network integra-
tion, with connections within the same network being weaker than
connections to all other networks (Figure 1B). The maximal value
of the segregation index is 1, which displays an isolated network
with large connections within and no connections to other
networks.

When calculating the mean z-transformed FC value, a distinc-
tion between positive and negative correlations must be made,
otherwise they cancel out each other. Moreover, interpretation of
negative correlations is still unclear (Chai et al. 2012; Fornito
et al. 2013; Murphy and Fox 2017). In addition, it is suggested
that negative correlations may be strengthened during the prepro-
cessing of functional imaging (Fox et al. 2009; Murphy et al.
2009; Murphy and Fox 2017). Therefore, we only used positive
correlations in the main analysis and set negative correlations to
zero.

Covariates. Except for age (in years), where age at time of
1000BRAINS examination (2011–2015) was taken, only covari-
ates from the HNR baseline examination (2000–2003) were used
in all analyses. Socioeconomic status (SES) and lifestyle variables
were assessed by questionnaire. Individual SES was defined based
on the International Standard Classification of Education as total
years of formal education, combining primary schooling and voca-
tional or professional education (UNESCO 1997) and categorized
into four groups (≤10, 11–13, 14–17, and ≥18 years of age). To
assess neighborhood SES, unemployment rates (units of percent-
age) between 2001 and 2003 were provided by local census
authorities for each residential neighborhood according to admin-
istrative boundaries (median size: 11,263 inhabitants) (Dragano
et al. 2009). Smoking status was categorized into current, former
(>1 y since quitting), and never smoker. Cumulative smoking ex-
posure (pack-years) was assessed for former and current smokers
and accounted for periods of nonsmoking. Environmental tobacco
smoke exposure (ETS; Yes/No) reflected regular passive exposure
to smoke at home, work, or another location. Physical activity
(Yes/No) was defined by regular sporting activities at least once a
week for a minimum of 30 min. Alcohol intake was obtained and
grouped into five categories (0, 1–3, >3–6, >6–14, >14 drinks
per week). A dietary pattern index ranging from 0 to 26, with 26
representing an ideal diet (Winkler and Döring 1998), was divided
into quantiles (<10, 11–12, 13–15, >15). Anthropometric meas-
urements (height, weight) were conducted according to standard
protocols and body mass index (BMI) was calculated as kilograms
per meter squared.

Statistical Analyses
We used multiple linear regression models to evaluate the associ-
ation between long-term air pollution and noise exposure at base-
line (2000–2003) with FC metrics at 1000BRAINS examination
(2011–2015) for seven brain networks, using each single expo-
sure as an independent variable and the segregation index for
each network as the main outcome. We chose a period of ∼ 10 y
between exposure and outcome measurement because of the long
latency of effects of external exposures on the brain. To improve
the understanding of changes in the segregation index, we per-
formed additional regression models with intra- and internetwork
FC as dependent variables.

We first conducted an unadjusted model (model 0) for each
brain network, where we performed separate crude linear regres-
sion models. In model 1, we added to model 0, adjustments for
sex and age at time of fMRI scan. Using a directed acyclic graph
(DAG; Figure S2) (Textor et al. 2011), we chose the minimal
adjustment set, including BMI, smoking status, physical activity,
alcohol consumption and diet, which were then included in model
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2. In model 3 (main model), we further adjusted model 2 for indi-
vidual SES and neighborhood SES. In the main model, air pollu-
tion exposure models were further adjusted for 24-h outdoor
noise whereas noise models were additionally adjusted for
PM2:5abs. Age and BMI were modeled using restricted cubic
splines with three knots. We examined the residuals for nonnor-
mality and nonconstant variance of the error terms for model fit.
To reduce the influence of measurement inaccuracies on noise
levels at the lower end, we modeled noise as a partially bound
continuous variable with a lower cutoff value of 50 dB(A) for
Lden and 45 dB(A) for Lnight, with all noise values lower than the
defined threshold being set to the threshold value following
(Nußbaum et al. 2020). For noise, we estimated model parame-
ters per 10-dB(A) increase in noise level. All air pollution expo-
sures were modeled as continuous variables, and air pollution
exposure model parameters were computed per interquartile
range (IQR) increase to allow comparable relative increases
across exposures.

For comparison, we additionally examined the relationship
between age as an independent variable and FC metrics as out-
comes for each of the seven networks. The regression models
were adjusted for sex, BMI, diet, physical activity, smoking status,
cumulative smoking, environmental tobacco smoke exposure,
alcohol consumption, and individual and neighborhood SES.

To summarize the results in one graphic, we use an algorithm
(see “R-code to Categorize Confidence Limits for Summarization
Plot” in the Supplemental Material) that categorized all confidence
intervals (CIs) into 10 categories by considering the direction of
the effect size and the precision of estimation (width of the CI).
For this, the direction of the effect size and the precision of estima-
tion (width of the CI) were considered. First, for each estimate,
CIs were divided into 8 equally sized segments. Depending on the
location of the zero value in segments, these 8 segments plus 2 cat-
egories for confidence limits completely above or below the zero
value, formed 10 categories. Then, each category was assigned a
color from blue to green displaying possible decrease (CI mostly
of <0) to increase (CI mostly of >0). To avoid graphically overes-
timating effects, confidence limits with effect estimates very close
to zero (categories 4–7) were grouped into 1 category (white)
(Figure S3).

Sensitivity Analyses
For the noise models, we performed sensitivity analyses using
different noise threshold values (45 dB(A) for Lden and 35 dB
(A) for Lnight). To account for possible exposure misclassifica-
tion in noise (e.g., due to house structure, ventilation habits),
we also evaluated indoor noise measures with threshold values
for indoor Lden and Lnight of 35dB(A) and 10dB(A) following
Ohlwein et al. (2019). Because ∼ 10% of values in indoor noise
levels were missing, these analyses were performed in a smaller
sample of 522 participants. In another sensitivity analysis, we
used inverse probability weighting (IPW) to account for selec-
tion bias introduced by the recruitment of participants for MRI
toward a more male, younger, and better-educated study popu-
lation compared with the general population. Given that distri-
butional assumptions have to be made for IPW with continuous
exposures, we followed recent recommendations and applied a
distribution-free method of quantile binning, with 20 distinct
bins, using the SAS code from Naimi et al. (2014). Because we
hypothesized that potential environmental effects on FC have a
long latency period, we used exposure data from the baseline
examination (2000–2003) in the main analysis. In a sensitivity
analysis, we used exposure data from the 5-y follow-up HNR
examination (2006–2008) instead. Because of the yet ambigu-
ous meaning of negative correlations (Chai et al. 2012; Fornito

et al. 2013; Fox et al. 2009; Murphy et al. 2009; Murphy and
Fox 2017), the main analysis included only positive correlations.
Statistical analyses were performed using R (version 3.6.2; R
Development Core Team).

Results

Study Population
Of 685 participants of the 1000BRAINS examination (2011–
2015) with exposure assessment (2000–2003), fMRI data were
available for 592 (Figure S4). Of these, 18 participants were
excluded owing to incomplete exposure data (n=2) or covariate
data (n=16), resulting in a final study population of 574 partici-
pants (44.1% female) of middle age at HNR baseline examination
(mean=56:1 y) and ∼ 10 y older at 1000BRAINS examination
(mean=67:4 y) (Table 1).

Participants excluded from the analysis were more likely
nonsmokers, slightly less highly educated, and were less physi-
cally active compared with included participants (Table S1).
Compared with HNR participants who did not participate in the
1000BRAINS study, HNR participants who participated in the
1000BRAINS study were on average younger, more likely male,
drank more alcohol, and more highly educated (Table S1).

Mean concentrations of PM2:5, PM10, and NO2 were 18.3,
27.5, and 29:5 lg=m3 (Table 2). The IQRs for PM2:5, PM10, and
NO2 were 1.4, 2.0, and 5:2 lg=m3. Mean outdoor noise levels
were 53.0 dB(A) for 24-h values and 44.1 dB(A) for nighttime
values. Some air pollution and noise exposures had a right-
skewed distribution and showed a small correlation (Spearman
correlation coefficient = 0:18–0:39) (Table 3).

On average, FC within networks was comparatively larger
(higher intra-network FC) than between networks (lower

Table 1. Demographic and lifestyle characteristic of the 1000BRAINS study
participants at HNR baseline examination (2000–2003) (n=574).

Variable Mean±SD or median (IQR) or n (%)

Age at HNR baseline (y) 56:1± 6:6
Age at fMRI (y) 67:4± 6:6
Sex
Female 253 (44.1)
Male 321 (55.9)

BMI (kg=m2) 27:1± 4:0
Physical activity
Yes 368 (64.1)
No 206 (35.9)

Nutrition index 12:2± 3:1
Environmental tobacco smoke exposure
Yes 216 (37.6)
No 358 (62.4)

Smoking status
Never smoker 240 (41.8)
Ex-smoker 220 (38.3)
Current smoker 114 (19.9)

Cumulative smoking (pack-years) 18.0 (24.5)
Alcohol consumption (drinks/wk)
Never 209 (36.4)
1–3 95 (16.6)
>3–6 85 (14.8)
>6–14 89 (15.5)
>14 96 (16.7)

Education (y)
≤10 29 (5.1)
11–13 290 (50.5)
14–17 153 (26.7)
≥18 102 (17.8)

Neighborhood unemployment (%) 12:0± 3:3

Note: No missing values included. BMI, body mass index; fMRI, functional magnetic
resonance imaging; HNR, Heinz Nixdorf Recall; IQR, interquartile range; SD, standard
deviation.
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internetwork FC) for all networks (Table 4), resulting in a seg-
regation index ranging from −0:17 to 0.93. Across all networks,
the mean segregation index took on positive values, reflecting
lager connections within networks (higher intra-network FC)
compared with smaller connections between networks (lower
internetwork FC). We observed the highest mean segregation
(0.60) in the visual network, and the lowest mean segregation
(0.32) in the frontoparietal network. Although mean internet-
work FC was quite constant across networks (ranging from 0.23
to 0.27), mean intra-network FC showed more variation across
networks. For instance, regions belonging to the visual network
showed large intra-network FC (mean= 0:62), whereas regions
of the frontoparietal network showed smaller functional con-
nections (mean= 0:37).

Air Pollution and FC
Only results from the main model (model 3) are described in detail
here given that the results for the other models do not differ
considerably (Figure S5; Table S2). For several pollutants, a
tendency toward a small association of higher air pollution with
less segregated networks (a lower segregation index) was observed,
with estimates ranging from −0:018 (95% CI: −0:037, 0.001) for a
613 n=mL increase in PNAM in the ventral attention network to
0.013 (95% CI: −0:011, 0.036) per 1:4-lg=m3 increase in PM2:5
in the visual network (Figures 2 and 3; Table S2). In comparison,
changes in the segregation index seen for 1 y of additional age with
estimates ranged from −0:004 (95% CI: −0:006, −0:002) to
−0:001 (95% CI: −0:003, 0.002) (Table S3). In particular, for an
increase of 0.3 × 10−5=m in PM2:5 absorbance, the segregation
index decreased by 0.006 (95% CI: −0:021, 0.009) in the sensori-
motor network. In comparison, a 1-y increase in age showed a
decreasing segregation index by 0.004 (95% CI: −0:006, −0:002)
in the same network. Thus, for PM2:5 absorbance we observed an
effect size comparable to a 1-y increase in age in the sensorimotor
network (Table S3).

A pattern of small, but overall positive, associations of higher
air pollution with comparatively larger connections between net-
works (higher internetwork FC) was most noticeable for soot
(PM2:5abs) [e.g., 0.004 (95% CI: −0:004, 0.012) per 0.3 × 10−5=m
PM2:5 absorbance in the ventral attention network] and distance of
<100 m to the nearest high-traffic roads [e.g., 0.031 (95% CI:
−0:003, 0.065) in the visual network] (Figures 3 and 4; Table S2).
On the other hand, no consistent pattern of larger or smaller

connections within networks (intra-network FC) was detectable
(Figures 3 and 4; Table S2). Although we saw some possible asso-
ciations between higher pollutants and higher intra-network FC,
smaller connections within networks, especially in the ventral atten-
tion [e.g., −0:012 (95% CI: −0:026, 0.001) per 2:0 lg=m3 PM10]
and sensorimotor network [e.g., −0:009 (95% CI: −0:026, 0.008)
per 2:0-lg=m3 PM10], were also observable. For the default net-
work, only small associations between distance to the nearest high-
traffic roads and decreased segregation [e.g., −0:051 (95% CI:
−0:127, 0.025) for <100-m vs. >200-m distance to high-traffic
roads] were observed, with no clear pattern of increase or decrease
in intra- or internetwork FC.

Traffic Noise and FC
For outdoor noise exposures, we observed small associations
between high noise exposure and low network segregation
(Figures 3 and 4; Table S2). These were most noticeable in the
frontoparietal and visual network [−0:020 (95% CI: −0:037,
−0:003) and −0:028 (95% CI: −0:049, −0:006) per 10-dB(A)
increase in Lden, respectively] and slightly smaller in the default

Table 3. Spearman correlations between residential long-term air pollution
at HNR baseline examination (2000–2003) and chronic traffic noise expo-
sure levels modeled in 2006 in the study population.

Exposure PM2:5 PM2:5abs PNAM NO2 Lden Lnight Disttrafroad
PM10 0.91 0.90 0.49 0.55 0.22 0.23 −0:52
PM2:5 0.89 0.73 0.64 0.22 0.23 −0:40
PM2:5abs 0.53 0.62 0.39 0.39 −0:55
PNAM 0.56 0.18 0.18 −0:11
NO2 0.30 0.29 −0:28
Lden 0.99 −0:33
Lnight −0:36

Note: Disttrafroad; distance to nearest high-traffic roads; HNR, Heinz Nixdorf Recall;
Lden, outdoor 24-h weighted noise; Lnight, outdoor nighttime noise; NO2, nitrogen diox-
ide; PM2:5, particulate matter with diameter ≤2:5 lm; PM2:5abs, PM2:5 absorbance
(soot); PM10, particulate matter with diameter ≤10 lm; PNAM, accumulation mode par-
ticle number concentration.

Table 2. Description of residential long-term air pollution at HNR baseline
examination (2000–2003) and chronic traffic noise exposure levels modeled
in 2006 in the study population.

Exposure Mean±SD or n (%) Range IQR

Air pollution
PM10 [lg=m3] 27:52± 1:81 24.11–34.11 2.04
PM2:5 [lg=m3] 18:26± 1:04 16.09–21.31 1.40
PM2:5abs ( × 10−5=m) 1:54± 0:32 1.04–4.28 0.34
PNAM (n/mL) 3,737:71± 437:10 2,774.14–5,087.34 613.03
NO2 [lg=m3] 29:54± 4:44 19.81–52.76 5.19
Traffic noise
Lden [dB(A)] 52:98± 8:76 34.30–77.63 12.90
Lnight [dB(A)] 44:07± 8:44 25.16–68.54 12.68
Disttrafroad (m)
<100 18 (3.1%) — —
100–200 27 (4.7%) — —
>200 530 (92.2%) — —

Note: —, not applicable; dB(A), A-weighted decibels; Disttrafroad; distance to nearest
high-traffic roads; HNR, Heinz Nixdorf Recall; IQR, interquartile range; Lden, outdoor
24-h weighted noise; Lnight, outdoor nighttime noise; NO2, nitrogen dioxide; PM2:5, par-
ticulate matter with diameter ≤2:5 lm; PM2:5abs, PM2:5 absorbance (soot); PM10, partic-
ulate matter with diameter ≤10 lm; PNAM, accumulation mode particle number
concentration; SD, standard deviation.

Table 4. Summary statistics for FC metrics at 1000BRAINS examination
(2011–2015).
Metric Min Max Mean±SD

Segregation index
Visual −0:02 0.93 0:60± 0:18
Sensorimotor 0.05 0.79 0:47± 0:15
Dorsal attention −0:03 0.77 0:37± 0:15
Ventral attention −0:01 0.75 0:39± 0:14
Limbic −0:17 0.86 0:33± 0:19
Frontoparietal −0:01 0.72 0:32± 0:14
Default −0:07 0.77 0:40± 0:16

Intra-network FC
Visual 0.20 1.74 0:62± 0:22
Sensorimotor 0.25 1.28 0:51± 0:16
Dorsal attention 0.22 1.02 0:44± 0:12
Ventral attention 0.23 1.00 0:45± 0:12
Limbic 0.17 1.05 0:40± 0:15
Frontoparietal 0.22 0.93 0:37± 0:10
Default 0.23 0.95 0:38± 0:09

Internetwork FC
Visual 0.11 0.84 0:23± 0:07
Sensorimotor 0.15 0.81 0:26± 0:07
Dorsal attention 0.16 0.78 0:27± 0:07
Ventral attention 0.17 0.79 0:27± 0:07
Limbic 0.14 0.75 0:25± 0:07
Frontoparietal 0.13 0.79 0:25± 0:07
Default 0.11 0.80 0:23± 0:08

Note: A segregation index of >0 indicates a more segregated network (theoretical maxi-
mal value of 1). A segregation index of <0 indicates higher integration with other net-
works. FC, functional connectivity; Max, maximum value; Min, minimum value; SD,
standard deviation.
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Figure 2. Segregation index. Associations between an IQR increase in mean air pollution exposure or an 10-dB(A) increase in mean noise level and network
segregation for seven established brain networks (default, dorsal and ventral attention, frontoparietal, limbic, sensorimotor, and visual). Estimates are for an
IQR increase of 2:0 lg=m3 for PM10, of 1:4 lg=m3 for PM2:5, of 0.3 × 10−5=m for PM2:5abs, of 613 n=mL for PMAM, and of 5:2 lg=m3 for NO2. All models
were adjusted for age at fMRI scan, sex, BMI, diet, physical activity, smoking status, cumulative smoking, environmental tobacco smoke exposure, alcohol
consumption, and individual and neighborhood SES. Air pollution models were further adjusted for 24-h outdoor noise and noise models were adjusted for
PM2:5abs. Estimates are displayed in Table S2. Note: BMI, body mass index; dB(A), A-weighted decibels; Disttrafroad, distance from home address to the nearest
high-traffic roads; fMRI, functional magnetic resonance imaging; IQR, interquartile range; Lden, outdoor 24-h weighted noise; Lnight, outdoor nighttime noise;
NO2, nitrogen dioxide; PM10, particulate matter with diameter≤10 lm; PM2:5, particulate matter with diameter≤2:5 lm; PM2:5abs, PM2:5 absorbance (soot);
PNAM, accumulation mode particle number concentration; SES, socioeconomic status.
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and sensorimotor network [−0:013 (95% CI: −0:033, 0.006)
and −0:014 (95% CI: −0:032, 0.004) per 10-dB(A) increase in
Lden, respectively].

Decreased intra-network FC [−0:029 (95% CI: −0:057,
−0:002) per 10-dB(A) increase in Lden in the visual network] and
increased internetwork FC [e.g., 0.005 (95% CI: −0:004, 0.014)
per 10-dB(A) increase in Lden in the dorsal attention network] were
observable for higher noise levels (Figures 3 and 4; Table S2).

Sensitivity Analysis
Our results were robust to different noise thresholds [45 dB(A)
for Lden and 35 dB(A) for Lnight (Figure S6; Table S4)]. In line
with the main analysis, higher indoor and outdoor noise expo-
sures were associated with smaller segregation in the frontoparie-
tal and visual network in the subsample of 522 participants with
indoor noise exposure values (Figure S7; Table S5). Moreover,
across all noise variables, smaller connections within regions of
the visual network were observable for high outdoor and indoor
noise levels. In addition, high indoor noise values showed small
associations with more pronounced network segregation of the
dorsal attention and possibly limbic networks, whereas this was
not apparent for outdoor noise values. No associations between
outdoor or indoor noise levels and internetwork FC were visible
compared with the main model.

Using IPW, we observed a more pronounced pattern of less
network segregation for high particle (PM10, PM2:5, PM2:5abs,
PNAM), and NO2 concentration than in the main analysis (Figure
S8; Table S6). For intra-network FC, we continued to see no clear
pattern of increase or decrease, but for high particle concentra-
tions and high noise levels, we observed smaller connections
within regions belonging to the ventral attention network and the
visual network, respectively.

In another sensitivity analysis using exposure data from 2006 to
2008 (5 y before the fMRI scans), we observed patterns similar to
those seen in the main analysis, with associations between higher

exposure and mostly higher segregation and lower internetwork FC
(Figure S9; Table S7). For intra-network FC, a mixture of higher
and lower intra-network FC with high exposure was seen.

Discussion
The present study suggests that long-term exposure to ambient
air pollution and road traffic noise is associated with altered
global intrinsic functional organization of the brain. Our findings
appear to support the hypothesis that exposure to long-term ambi-
ent air pollution and road traffic noise may lead to less segregated
and more integrated brain networks. Therefore, high air pollution
and noise levels might favor an age-like change in functional
brain organization.

Functional Organization and Brain Aging
The healthy brain is intrinsically organized into functionally dis-
tinct and specialized brain networks that process different types of
information (Wig 2017). The resulting structure of segregated net-
works for specialized functions (e.g., fast processing visual input)
alongside integrated networks for higher cognitive functions (e.g.,
memory function) is characteristic of functional brain organization.
The degree of network segregation is used to assess functional net-
work organization (Chan et al. 2014). Neuroimaging studies in
adults have reported decreasing segregation with increasing age in
various networks (Chan et al. 2014; Iordan et al. 2018; Malagurski
et al. 2020; Stumme et al. 2020). These changes were further linked
to decreased cognitive function in adults (Chan et al. 2014; Cohen
and D’Esposito 2016; Damoiseaux 2017; Marques et al. 2016;
Stumme et al. 2020; Wig 2017). In particular, evidence indicates
that lower functional segregation (a more integrated network struc-
ture) is linked to worse episodic memory (Chan et al. 2014),
declines in processing speed (Ng et al. 2016), and slower learning
rates (Iordan et al. 2018).

Two aging theories try to link the altered functional brain or-
ganization to cognition, and it is suggested that they are not

Figure 3. Summarization plot. Graphical summarization of associations between air pollution, noise, and altered network segregation, intra- and internetwork
FC in seven established networks (default, dorsal and ventral attention, frontoparietal, limbic, sensorimotor, and visual). Estimates for an IQR increase of
2:0 lg=m3 for PM10, of 1:4 lg=m3 for PM2:5, of 0.3 × 10−5=m for PM2:5abs, of 613 n=mL for PMAM, and of 5:2 lg=m3 for NO2. All models were adjusted for
age at fMRI scan, sex, BMI, diet, physical activity, smoking status, cumulative smoking, environmental tobacco smoke exposure, alcohol consumption, and
individual and neighborhood SES. Air pollution models were further adjusted for 24-h outdoor noise and noise models were adjusted for PM2:5 absorbance. To
evaluate the effects and to summarize the results graphically, we defined 10 categories into which we categorized all CIs, depending on the location of the zero
value in each CI (see Figure S3). To avoid graphically overestimating effects, CIs with effect estimates very close to zero were grouped into one category
(white). Note: BMI, body mass index; CI, confidence interval; dB(A), A-weighted decibels; Disttrafroad, distance from home address to the nearest high-traffic
roads; FC, functional connectivity; fMRI, functional magnetic resonance imaging; IQR, interquartile range; Lden, outdoor 24-h weighted noise; Lnight, outdoor
nighttime noise; NO2, nitrogen dioxide; PM2:5, particulate matter with diameter ≤2:5 lm; PM2:5abs, PM2:5 absorbance (soot); PM10, particulate matter with
diameter ≤10 lm; PNAM, accumulation mode particle number concentration; SES, socioeconomic status.
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mutually exclusive and may even influence each other (Gazzaley
and D’Esposito 2003; Stumme et al. 2020). The compensatory
theory suggests that connections between networks increase with
age to compensate for age-related decreased FC within networks
to maintain cognitive performance (Gazzaley and D’Esposito
2003). The dedifferentiation theory states that a reduced specifi-
cation of networks leads to increased neuronal noise, reduced
processing speed, and increased energy consumption (Gazzaley
and D’Esposito 2003). Eventually, this leads to cognitive decline
(Geerligs et al. 2015). It is proposed that the reduced specifica-
tion of networks results from of a series of age-related neuro-
biological processes, beginning with the reduced concentrations
of neurotransmitters (e.g., dopamine), with lower neuronal
responsiveness and increased neuronal noise (Li et al. 2001).

To maintain performance, brain regions are activated in a non-
specific (random) fashion, which eventually results in diffuse
patterns of functional connections (Fornito et al. 2015).
Although cognitive ability is maintained at first, the progressive
diffusion of networks leads to less distinct activation patterns of
different stimuli, such as visual perception (Bennett et al. 2007;
Goh et al. 2010; Park et al. 2004) or motor action (Carp et al.
2011), and may subsequently result in impaired cognitive func-
tion (Koen and Rugg 2019).

Air Pollution
To date, studies investigating the impact of air pollution on FC
are scarce. Only one study examined the impact of indoor air

Figure 4. Intra- and internetwork FC. Associations between an IQR increase in mean air pollution exposure or an 10-dB(A) increase in mean noise level and
intra- or internetwork FC for seven established brain networks (default, dorsal and ventral attention, frontoparietal, limbic, sensorimotor, and visual). Estimates
are shown for an IQR increase of 2:0 lg=m3 for PM10, of 1:4 lg=m3 for PM2:5, of 0.3 × 10−5=m for PM2:5abs, of 613 n=mL for PMAM, and of 5:2 lg=m3 for
NO2. All models were adjusted for age at fMRI scan, sex, BMI, diet, physical activity, smoking status, cumulative smoking, environmental tobacco smoke ex-
posure, alcohol consumption, and individual and neighborhood SES. Air pollution models were further adjusted for 24-h outdoor noise and noise models were
adjusted for PM2:5 absorbance. Note: BMI, body mass index; dB(A), A-weighted decibels; Disttrafroad, distance from home address to the nearest high-traffic
roads; fMRI, functional magnetic resonance imaging; IQR, interquartile range; Lden, outdoor 24-h weighted noise; Lnight, outdoor nighttime noise; NO2, nitro-
gen dioxide; PM2:5, particulate matter with diameter ≤2:5 lm; PM2:5abs, PM2:5 absorbance (soot); PM10, particulate matter with diameter ≤10 lm; PNAM,
accumulation mode particle number concentration; SES, socioeconomic status.
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pollution on cognitive function and brain health in older adults
(Wong 2020). They reported associations between regular
incense burning with poorer cognitive performance. Although
no structural brain alterations were visible for regular incense
burning, decreased FC within regions of the default network
were observed. The insufficient suppression of the default net-
work has been linked to attention deficit hyperactivity disorder
(Mowinckel et al. 2017), autism (Padmanabhan et al. 2017), and
cognitive impairment (Lee et al. 2016). Therefore, Wong et al.
(2020) suggested that indoor incense burning alters FC, possibly
leading to increased vulnerability to future cognitive decline.

Other studies on air pollution and FC have been conducted
only in children. In a cohort of children (8–12 years of age), Pujol
et al. (2016) found older age was associated with higher functional
connection within the default network along with smaller connec-
tions to other networks. In contrast, they observed smaller connec-
tions within the default network in children with higher exposure
to air pollution (elemental carbon and NO2). Because with increas-
ing age, stronger connections are built between functionally
related brain regions in normal brain maturation, they concluded
that exposure to higher air pollution may decelerate brain matura-
tion. Similarly, in a pilot study, de Water et al. (2018) found that
prenatal exposure to manganese, which is neurotoxic at high lev-
els, was associated with reduced FC within brain regions involved
in emotions and regulation processing in childhood (6–7 years of
age). In addition, in a group of 14 adolescents (12–18 years of
age) they observed associations between early postnatal exposure
to manganese and decreased functional connections within brain
regions for motor function (de Water et al. 2019). Thus, research
indicates that children’s functional organization may be altered by
environmental exposures, possibly slowing brain maturation. To
our knowledge, there have been no prior studies examining the
association of outdoor air pollution and FC in adults. Therefore, it
is unclear how adult FC may be affected by outdoor air pollution.

In line with several neurological studies on healthy aging and
functional organization in adults, overall patterns of slightly
lower network segregation with higher air pollution exposure
were visible in the present study. This suggests that high air
pollution might be associated with altered functional network
organization (less segregated and more integrated network
structure). Overall, the less segregated and more integrated net-
work structure seems to be related to increasing connectivity
between networks rather than decreasing connectivity within net-
works. In line with de Water et al. (2019), we observed a tendency
toward smaller connections with higher air pollution exposure
within regions of the sensorimotor network, which is responsible
for motor function, and the ventral attention network, which is
associated with detecting unexpected stimuli and shifting attention.
For other networks, no clear pattern was detectable for intra-
network FC. Contrary to the results of other studies, we did not
find a general decrease in FC between regions of the default net-
work. We did, however, observe reduced segregation in the default
network. Whether this comes from reduced FC within the network
or from stronger functional connections to other networks is not
clear. Our results were even more pronounced using IPWs, indi-
cating that effects may be stronger in a more general population
than those observed in our study population. Moreover, our
findings are consistent with previous neurological research on
age-related changes in FC and correspond to the dedifferentia-
tion theory (loss of functional specification) in healthy aging
(Goh 2011).

Traffic Noise
Up to now, the association between noise and functional brain or-
ganization has rarely been studied. In a small experimental study

with 30 participants, Zou et al. (2019) reported that short-term
noise levels were associated with a less segregated and more inte-
grated brain network structure. A recent study investigated the
impact of long-term aircraft noise exposure on various brain out-
comes in fighter jet pilots using a matched study design (Cheng
et al. 2019). They reported impaired working memory function
and neuronal loss, as well as reduced neuronal activity in the hip-
pocampus and other brain regions important for cognition, under
exposure to chronic noise and stress.

Similar to our findings for air pollutants, we observed patterns
of less segregated and more integrated brain networks with
increasing long-term outdoor noise exposure, especially for the
visual and frontoparietal network. Although these changes seem
to result from lower intra-network FC in the visual network,
higher internetwork FC seems to drive the lower segregation in
the frontoparietal network.

The associations with outdoor noise seemed to indicate that
increasing integration arises from increased connections between
distinct networks. Similar to the dedifferentiation theory, higher
noise levels were associated with more integrated networks.
Although these results were also present for indoor noise values,
we additionally observed lager network segregation for the dorsal
attention network (associated with orientation of attention) and
the limbic network (associated with emotion regulation and social
interaction). This may be a result of lager connections between
regions within these networks. However, the reduced sample size
may have influenced the results. In addition, indoor noise values
were calculated based on questionnaire data but were not vali-
dated, and thus they might be biased. Nevertheless, these results
show that noise may affect the intrinsic organization of the brain
and be a vital piece in unraveling how functional organization
may be affected by external factors.

Potential Biological Mechanisms
The biological mechanisms through which air pollution is associ-
ated with neurocognitive impairments are still not fully under-
stood. It is assumed that particles reach the brain through
inhalation either indirectly from the lungs into the bloodstream
and crossing the blood–brain barrier or directly from the nose
through the olfactory nerve (Geiser et al. 2005; Oberdörster et al.
2004). Accumulated particles can then cause chronic brain
inflammation, oxidative stress and microglia activation, which
are linked to cognitive impairment and neurodegeneration (Block
et al. 2012). With experimental studies showing that microglia
activation amplifies dopaminergic neurotoxicity (Block et al.
2004), it is hypothesized that neurotransmitter systems are weak-
ened and that synaptic plasticity, important for learning processes
or recovery from brain lesions, is reduced (Allen et al. 2017). At
this level, long-term air pollution could adversely affect FC and
lead to reorganized functional connections between brain regions,
as seen in the age-related dedifferentiation process. These func-
tional changes could, in turn, due to neuronal death, lead to struc-
tural changes as reduced brain volume and lead to impaired
cognitive function.

Chronic noise is assumed to affect the brain through different,
but possibly interrelated, biological mechanisms as air pollution.
Noise leads to increased annoyance and stress, thereby arousing
the autonomous nervous system/hypothalamus–pituitary–adrenal
axis (HPA-axis) (Jafari et al. 2019). Animal studies suggest that
chronic activation of the HPA-axis may lead to reduced neuro-
genesis (production of neurons) and altered synaptic plasticity,
followed by functional and structural changes (Cheng et al.
2019). However, it remains to be investigated precisely how
noise can affect brain functionality.
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Strengths and Limitations
Although the size of the study is relatively large compared with
other MRI studies, the power to detect small environmental
effects might not be sufficient, and single statistically significant
results can occur by chance only. Therefore, further studies with
larger sample sizes should follow. Moreover, potential selection
bias occurred with younger, better educated, and healthier study
participants compared with the general population. Although we
performed IPW analysis to compensate for this, residual selection
bias could still occur. Because we used functional scans from one
time point, we were unable to establish the exposure-related
change in FC over time. Although having a relatively small expo-
sure variability compared with other, specifically national studies,
this study is based on a contiguous study area that is relatively
homogeneous in terms of primary and secondary pollutant sour-
ces and living conditions. Thus, there is less random and system-
atic variation compared with studies covering different parts of a
country. Exposure contrast is primarily based on small-scale
intra-urban differences, which have been shown to be more im-
portant for health effects than between-area variability in many
studies (Zemp 1999; Miller 2007; Atkinson 2013).

To our knowledge, this is the first study to investigate the
association of long-term air pollution and chronic traffic noise
with functional brain organization in older adults. Later in life,
the brain is very vulnerable, as progressive neurocognitive degen-
eration starts (Park and Reuter-Lorenz 2009; Wig 2017) and
compensatory mechanisms begin to falter (Grossman 2014).
Given the increasing life expectancy, it is important to understand
how cognitive function can be preserved (Park and Reuter-
Lorenz 2009). Furthermore, air pollution and noise are worldwide
issues, and with globally increasing life expectancy, it is of high
importance to understand how environmental exposures affect
the brain. Because of the age range of the 1000BRAINS study
(55–85 y), we were able to investigate effects during this vulnera-
ble period. Moreover, only a limited number of studies on func-
tional brain organization and noise exposure exist to date. Our
study contributes new insights into how long-term noise expo-
sures may influence brain function.

Conclusions
Overall, high exposure to air pollution and noise was associated
with less segregated functional brain networks. To our knowl-
edge, this is the first study examining associations between expo-
sure to long-term air pollution and chronic traffic noise and FC in
older adults. Although we observed only small associations, for
high air pollution and noise exposure, we noticed possible trends
toward more diffuse patterns of FC, which are also seen in nor-
mal brain aging. With continuously increasing global life ex-
pectancy, maintaining cognitive function is essential for good
quality of life and independence in older age, for individuals
and society. As such, it is an important public health issue to
understand how modifiable external factors affect the brain and
cognition. In this study, we observed associations comparable
to a 1-y increase in age. Thus, long-term exposure to air pollu-
tion and noise might favor age-like changes in FC, possible
mediating adverse effects on cognition. Further studies are
needed to understand the complex way in which air pollution
and noise may affect the brain.
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