000911676 001__ 911676
000911676 005__ 20221123131042.0
000911676 0247_ $$2Handle$$a2128/32729
000911676 037__ $$aFZJ-2022-04931
000911676 1001_ $$0P:(DE-Juel1)161225$$aGENON, Sarah$$b0$$eCorresponding author
000911676 1112_ $$aOrganization for Human Brain Mapping$$cGlasgow, Scotland$$d2022-06-19 - 2022-06-23$$wUK
000911676 245__ $$aBrain parcellation and functional territories introduction
000911676 260__ $$c2022
000911676 3367_ $$033$$2EndNote$$aConference Paper
000911676 3367_ $$2DataCite$$aOther
000911676 3367_ $$2BibTeX$$aINPROCEEDINGS
000911676 3367_ $$2DRIVER$$aconferenceObject
000911676 3367_ $$2ORCID$$aLECTURE_SPEECH
000911676 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1669124432_2260$$xPlenary/Keynote
000911676 520__ $$aA defining aspect of brain organization is its spatial heterogeneity, which gives rise to multiple topographies at different scales. Brain parcellation — defining distinct partitions in the brain, be they areas or networks that comprise multiple discontinuous but closely interacting regions — is thus fundamental for understanding brain organization and function. The past decade has seen an explosion of in vivo MRI-based approaches to identify and parcellate the brain on the basis of a wealth of different features, ranging from local properties of brain tissue to long-range connectivity patterns, in addition to structural and functional markers. In this talk, I will introduce brain parcellation and provide an overview of the main approaches. I will then focus more particularly on connectivity-based parcellation (CBP) applied to different connectivity features. This will lead us to discuss convergence and divergence across features and the related open challenges. Articles discussed: Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-based parcellations of the human brain. Nat Rev Neurosci, 19(11), 672-686. doi:10.1038/s41583-018-0071-7 Genon, S., Bernhardt, B. C., La Joie, R., Amunts, K., & Eickhoff, S. B. (2021). The many dimensions of human hippocampal organization and (dys) function. Trends in Neurosciences. Plachti, A., Eickhoff, S. B., Hoffstaedter, F., Patil, K. R., Laird, A. R., Fox, P. T., . . . Genon, S. (2019). Multimodal Parcellations and Extensive Behavioral Profiling Tackling the Hippocampus Gradient. Cereb Cortex, 29(11), 4595-4612. doi:10.1093/cercor/bhy336 Software employed: CBBtools: https://github.com/inm7/cbptools Data: https://www.humanconnectome.org/study/hcp-young-adult/data-releases
000911676 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000911676 8564_ $$uhttps://orbi.uliege.be/handle/2268/292566
000911676 8564_ $$uhttps://juser.fz-juelich.de/record/911676/files/Parcellation_GenonS_OHBM2022_compressed.pdf$$yOpenAccess
000911676 909CO $$ooai:juser.fz-juelich.de:911676$$popenaire$$popen_access$$pVDB$$pdriver
000911676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b0$$kFZJ
000911676 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000911676 9141_ $$y2022
000911676 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911676 920__ $$lyes
000911676 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000911676 9801_ $$aFullTexts
000911676 980__ $$aconf
000911676 980__ $$aVDB
000911676 980__ $$aUNRESTRICTED
000911676 980__ $$aI:(DE-Juel1)INM-7-20090406