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Abstract. There are many possible future energy systems – many of them un-

foreseen. We explore the range of parameter uncertainty and quantify parameter 

interrelations to generate multiple scenarios. Only sensible parameter combina-

tions remain as inputs to an energy system optimization and coupled models. In 

the past, computational limitations have been a major obstacle to calculate such 

an enormous space of scenarios. Opposed to that, we use high-performance com-

puting. To utilize the HPC-system efficiently the parallel solver for linear pro-

grams PIPS-IPM++ is applied. We integrate it into a tool chain of different com-

ponents including scenario generation, energy system optimization and results 

evaluation and tackle the challenge of coupling a large diversity of software pack-

ages in a fully automated HPC workflow. This enables the calculation of all sce-

narios in a matter of days. Furthermore, we use a set of 37 indicators to provide 

a comprehensive assessment of the simulated energy systems. In this way, we 

cover multiple perspectives, such as system adequacy, security of supply or be-

havior of market actors. Whereas scenarios with low spatial resolution do not 

lead to clear results, higher resolutions do. Yet, we identified three clusters of 

scenarios, among which a group with high natural gas dependency is found. This 

allows to study disruptive events like price shocks in a vast parameter space and 

to identify countermeasures for the long-term. 
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1 The 3 challenges of energy scenario analysis 

Despite great progress in energy systems analysis in the last decades, three key chal-

lenges are still apparent when trying to answer questions on future energy systems. The 

first challenge is that computational limitations are a major obstacle. To analyze a mul-

titude of scenarios, parallelization and thus, high-performance computers (HPC) are 

necessary. Many projects have, in contrast, gone the other way: shortcuts are used, like 

analyzing only typical days instead of complete timeseries [1]. The second challenge is 

that future pathways are highly contingent on assumptions. Different assumptions in 

different projects have led to very different scenarios [2]. As a consequence, compari-
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sons and evaluations are highly problematic. The traditional solution, while scientifi-

cally not satisfactory, has been to take a very selective set of assumptions. The last 

challenge is that, given a certain methodology, only certain aspects of future scenarios 

are typically analyzed. For example, optimization models tend to concentrate on system 

costs [3], whereas agent-based simulations focus on individual strategies of actors. 

Hence, there is a certain blindness to certain aspects just by the methodology the re-

searcher has chosen. 

Taken altogether, these problems substantially reduce the trust in energy systems 

modeling. Hence, this paper tries to address all three problems by answering: “If it 

would be possible to explore the full possibility space of future energy scenarios, could 

we select those that are near optimal from a multitude of perspectives?” This allows us 

to get nearer to our goal, a comprehensive assessment of future energy systems. 

Our contribution to addressing the first challenge is the further application of the 

parallel solver – PIPS-IPM++ [4]. It allows us to solve Energy System Optimization 

Models (ESOMs) on HPCs by exploiting the block-structure of the corresponding lin-

ear programs (LPs). Our solution to the second problem is to sample from a huge pa-

rameter space, whereas the third problem is addressed by coupling different tools, e.g., 

the ESOM, REMix [5] and the agent-based simulation, AMIRIS [6]. The resulting in-

dicators provide a comprehensive assessment of energy scenarios including security of 

supply and market impact. Only this makes a full analysis of points of interests (POIs) 

possible. We define POIs as a special space where many indicators across all scenarios 

evaluated are above average. 

2 Methods 

Our modeling goals require the integration of various complex steps. Therefore, we 

developed a pipeline of multiple software packages within a HPC workflow (see 

Fig. 1). 

 
Fig. 1. Software components and data flow pipeline that is executed for each scenario on HPCs.  

We start with a basic parameterization of REMix, which is already useable for en-

ergy scenario analysis without any uncertainty consideration. We automatically gener-

ate a large variety of scenarios with a newly developed parameter sampling tool (Sce-

nario Generator) to describe the parametric uncertainty of various instances of the basic 
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REMix model. These model instances are LPs generated by GAMS, which are passed 

to the parallel solver PIPS-IPM++ for scenario solving. The optimal solution of each 

LP can be interpreted as one possible scenario in terms of power infrastructure required 

in the future. Each can be evaluated by calculating numerous indicators. The HPC 

workflow consists of executing this pipeline for each scenario, as well as providing the 

data structure to exchange data between individual components. Thus, we are able to 

evaluate all scenario indicators to observe the POI by statistical analyses. 

2.1 Basic Energy System Optimization Model and Scenario Generation 

The REMix parameterization represents a high-resolution network of the German 

power system on transmission grid level. The 479 nodes represent unique locations of 

transformer substations. Additionally, nine neighboring countries are included with 

fixed imports and exports to Germany. The model focuses on the power sector with 

several power plant, storage and grid technologies included. Due to the goal to decar-

bonize the German energy system stepwise, only already available coal and lignite 

power plants are deployed. Gas-fired power plants can be expended as transition tech-

nologies. High CO2 prices increase the attractiveness of investments into CO2-poor 

technologies. 

The input parameters include historical weather profiles for the dispatch of the re-

newable energies for the years 1995-2018. Additionally, techno-economic parameters 

such as investment cost, fuel cost, CO2 allowance cost, efficiencies, fixed and variable 

operations and maintenance costs are included, which have been subject to our param-

eter sampling approach. Drivers are varied randomly to create different instances of the 

model. For consistency reasons (e.g., coupled oil and gas prices), we need i) a collection 

of possible parameter values, ii) information about the probability distributions of these 

values and iii) information about possible interrelations. For this, we define pseudo-

correlations (strongly negative, negative, none, positive, strongly positive) of the driv-

ers based on expert assessments. 

Thus, a literature research with about 50 sources including energy scenario studies 

on both Europe, e.g., [7] and Germany, e.g., [8] derives statistical descriptors of the 

drivers’ values. A statistical derivation of a probability distribution of parameter values 

from different studies is impossible. Instead, we use truncated normal distributions, 

which are defined by the collected statistical descriptors, which results in consistent 

REMix instances and thus, various scenarios to be passed to the solver. 

2.2 Parallel computing of multiple optimization models using PIPS-IPM++ 

Each model instance to be solved by PIPS-IPM++ has to be annotated, which means 

that variables and constraints are assigned to independent blocks to be treated in parallel 

by the solver. Despite a large variety of conceivable criteria to define these blocks, we 

annotate each model instance into time blocks, which represent predefined time slices 

in the modeled operation horizon. We need to stress that the available computing hard-

ware determines how model instances are annotated. In our case, the corresponding 

limitations are a maximal total wall-clock time of 24h and a maximum of 192 GB RAM 
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per compute node. We annotate the problem instances into 730 blocks to be solved in 

216 MPI tasks distributed across 18 compute nodes with 4 cores per task. PIPS-IPM++ 

is executed using the hierarchical approach, which is for our application the best setup 

to avoid memory issues. As a result, we are able to solve model instances with about 

94.6M variables (including 3713 linking variables and thereof 3356 globally) and 

91.2M constraints (ca. 367k locally and 693 linking globally) in about 14 hours. After 

a successful solve, a post-solving process creates a solution as GDX file to be used by 

subsequent workflow steps (indicator models).  

2.3 Indicator Assessment 

To assess the various aspects of future energy system scenarios, we coupled several 

models (see section 2.5) for a more comprehensive analysis of the solved ESOM in-

stances. For that, 37 indicators [9] are defined, which are computed by indicator models 

(e.g., an agent-based model that simulates the behavior of stakeholders at the electricity 

market for each scenario). For some indicators, the interpretation is clear, e.g. system 

costs or CO2 emissions – lower is better. However, for some indicators this is less clear. 

Therefore, indicators are scored in respect to the overall mean of all scenarios. If it is 

above or below one standard deviation in the desired direction (if possible), it is con-

sidered for further investigation. Scenarios that have a lot of these indicators, are se-

lected and dubbed points of interest. 

2.4 Workflow automatization 

The overarching goal of our workflow automatization is to provide a basis for ana-

lyzing a large number of scenarios, but also to allow massively parallel implementation 

on HPC with automatic data exchange. The challenge is to maintain a bug-free work-

flow consisting of dozens of scripts or program calls, which are linked in a serial man-

ner and are subject to continuous development. Hence, any change in just one compo-

nent might break the whole workflow. I, whereas bugs are detected at the end of the 

workflow by persons who are not in charge of the component that causes the unex-

pected behavior at the start. In addition to the already existing HPC software stack, we 

had to install about 28 software packages, each with its own dependencies. Parser 

scripts used for data transformation require exception handling, which were usually not 

implemented initially. Nevertheless, replacing broken workflow components is not al-

ways possible, e.g., replacing PIPS-IPM++ by a commercial solver.  

To keep an overview of this complex workflow we extended the software JUBE 

[10], which manages the tailor-made naming scheme and hierarchical data structure 

consisting of ~ 1.000 directories and ~ 42.000 files and almost 1 TB of data in total.  

The JUBE extension introduces another layer of parallelism to the workflow besides 

the solver resulting in a reduction of the total workflow runtime. Implementing this 

exchange of independent and highly specialized software in a stable manner took a team 

of 10 about 1.5 years, calculations took about 550.000 core hours. 

The next section presents these results in condensed form. 
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3 Results 

First, we cluster indicators and inputs. For robustness reasons, both k-means and k-

medoids are employed, using both the BIC and GAP method to determine the optimal 

number of clusters. For 1000 scenarios with a low spatial resolution leads not to dis-

cernible clusters. Hence, we evaluate a lower number of highly resolved ESOMs. As 

shown in Fig. 2 (indicators are collapsed into two dimensions), we observe three clearly 

delineated clusters. The first cluster (green) is in-between extremes for most indicators. 

The second one (red) is opposite to the first one with the highest dependencies on nat-

ural gas, more CO2-emissions, but high technological flexibility to adjust to fluctuations 

in demand and supply. The third cluster (blue) subsumes power systems with high 

shares of renewables (RE-share), low CO2-emissions, high demand and somewhat 

higher system costs, but less capability for flexible load-balancing.  

 
Fig. 2. Scenario clusters for the two main dimensions 

Correlations between indicators are as expected, e.g., a high RE-share corresponds 

to low CO2-emissions, etc. This lends credibility to scenario generation and analysis. 

Points of interest are all scenarios where a majority of indicators show values one 

standard deviation above (e.g. RE-share) or below (e.g., CO2-emissions) the mean of 

all scenarios. Overall, there are few points of interest, i.e. systems where many indica-

tors would point to a system that is satisfactory concerning system adequacy, security 

of supply, and economic performance. Differences between scenarios are small, i.e. t-

tests between potential “good” and “bad” systems are not significant. 

4 Discussion and Conclusion 

This paper addresses three problems of current energy systems analysis, i.e. compu-

tational limitations, model results that are highly dependent on varying assumptions 
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and the limited perspectives of single models on only some aspects1. By implementing 

a complex and scalable HPC work flow through coupling a number of specialized mod-

els, application of PIPS-IPM++, and a comprehensive set of indicators, this paper pro-

poses a solution to these problems. However, some limitations remain. First, the initial 

high number of scenarios had a too low spatial resolution. Hence, relevant bottlenecks 

could not be identified. After switching to a much higher spatial resolution, not too 

many high-resolution scenarios could be calculated, yet. Second, POIs are defined sta-

tistically, not from a system perspective. 

What is achieved? Our results pave the way to more robust energy system modeling, 

since they cover a large range of assumptions and future pathways. We found a few 

scenarios that seem to satisfy a number of desiderata for a near-optimal energy system. 

Our indicator set is easily reusable and allows a comprehensive assessment of energy 

systems, most notably system adequacy, security of supply, sustainability, and eco-

nomic performance 

The established broad scale analysis can be reused for future analyses which also put 

emphasis on systems beyond the power sector and solving of mixed-integer linear pro-

grams. Due to the HPC capability and automation this workflow provides full scalabil-

ity, which can be further improved by making the parallel solver PIPS-IPM++ more 

robust and computationally more performant. 
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