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Abstract. There are many possible future energy systems — many of them un-
foreseen. We explore the range of parameter uncertainty and quantify parameter
interrelations to generate multiple scenarios. Only sensible parameter combina-
tions remain as inputs to an energy system optimization and coupled models. In
the past, computational limitations have been a major obstacle to calculate such
an enormous space of scenarios. Opposed to that, we use high-performance com-
puting. To utilize the HPC-system efficiently the parallel solver for linear pro-
grams PIPS-IPM++ is applied. We integrate it into a tool chain of different com-
ponents including scenario generation, energy system optimization and results
evaluation and tackle the challenge of coupling a large diversity of software pack-
ages in a fully automated HPC workflow. This enables the calculation of all sce-
narios in a matter of days. Furthermore, we use a set of 37 indicators to provide
a comprehensive assessment of the simulated energy systems. In this way, we
cover multiple perspectives, such as system adequacy, security of supply or be-
havior of market actors. Whereas scenarios with low spatial resolution do not
lead to clear results, higher resolutions do. Yet, we identified three clusters of
scenarios, among which a group with high natural gas dependency is found. This
allows to study disruptive events like price shocks in a vast parameter space and
to identify countermeasures for the long-term.
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1 The 3 challenges of energy scenario analysis

Despite great progress in energy systems analysis in the last decades, three key chal-
lenges are still apparent when trying to answer questions on future energy systems. The
first challenge is that computational limitations are a major obstacle. To analyze a mul-
titude of scenarios, parallelization and thus, high-performance computers (HPC) are
necessary. Many projects have, in contrast, gone the other way: shortcuts are used, like
analyzing only typical days instead of complete timeseries [1]. The second challenge is
that future pathways are highly contingent on assumptions. Different assumptions in
different projects have led to very different scenarios [2]. As a consequence, compari-



sons and evaluations are highly problematic. The traditional solution, while scientifi-
cally not satisfactory, has been to take a very selective set of assumptions. The last
challenge is that, given a certain methodology, only certain aspects of future scenarios
are typically analyzed. For example, optimization models tend to concentrate on system
costs [3], whereas agent-based simulations focus on individual strategies of actors.
Hence, there is a certain blindness to certain aspects just by the methodology the re-
searcher has chosen.

Taken altogether, these problems substantially reduce the trust in energy systems
modeling. Hence, this paper tries to address all three problems by answering: “If it
would be possible to explore the full possibility space of future energy scenarios, could
we select those that are near optimal from a multitude of perspectives?” This allows us
to get nearer to our goal, a comprehensive assessment of future energy systems.

Our contribution to addressing the first challenge is the further application of the
parallel solver — PIPS-IPM++ [4]. It allows us to solve Energy System Optimization
Models (ESOMSs) on HPCs by exploiting the block-structure of the corresponding lin-
ear programs (LPs). Our solution to the second problem is to sample from a huge pa-
rameter space, whereas the third problem is addressed by coupling different tools, e.g.,
the ESOM, REMix [5] and the agent-based simulation, AMIRIS [6]. The resulting in-
dicators provide a comprehensive assessment of energy scenarios including security of
supply and market impact. Only this makes a full analysis of points of interests (POIs)
possible. We define POls as a special space where many indicators across all scenarios
evaluated are above average.

2 Methods

Our modeling goals require the integration of various complex steps. Therefore, we
developed a pipeline of multiple software packages within a HPC workflow (see
Fig. 1).
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Fig. 1. Software components and data flow plpellne that is executed for each scenario on HPCs

We start with a basic parameterization of REMix, which is already useable for en-
ergy scenario analysis without any uncertainty consideration. We automatically gener-
ate a large variety of scenarios with a newly developed parameter sampling tool (Sce-
nario Generator) to describe the parametric uncertainty of various instances of the basic



REMix model. These model instances are LPs generated by GAMS, which are passed
to the parallel solver PIPS-IPM++ for scenario solving. The optimal solution of each
LP can be interpreted as one possible scenario in terms of power infrastructure required
in the future. Each can be evaluated by calculating numerous indicators. The HPC
workflow consists of executing this pipeline for each scenario, as well as providing the
data structure to exchange data between individual components. Thus, we are able to
evaluate all scenario indicators to observe the POI by statistical analyses.

2.1  Basic Energy System Optimization Model and Scenario Generation

The REMix parameterization represents a high-resolution network of the German
power system on transmission grid level. The 479 nodes represent unique locations of
transformer substations. Additionally, nine neighboring countries are included with
fixed imports and exports to Germany. The model focuses on the power sector with
several power plant, storage and grid technologies included. Due to the goal to decar-
bonize the German energy system stepwise, only already available coal and lignite
power plants are deployed. Gas-fired power plants can be expended as transition tech-
nologies. High CO- prices increase the attractiveness of investments into CO»-poor
technologies.

The input parameters include historical weather profiles for the dispatch of the re-
newable energies for the years 1995-2018. Additionally, techno-economic parameters
such as investment cost, fuel cost, CO; allowance cost, efficiencies, fixed and variable
operations and maintenance costs are included, which have been subject to our param-
eter sampling approach. Drivers are varied randomly to create different instances of the
model. For consistency reasons (e.g., coupled oil and gas prices), we need i) a collection
of possible parameter values, ii) information about the probability distributions of these
values and iii) information about possible interrelations. For this, we define pseudo-
correlations (strongly negative, negative, none, positive, strongly positive) of the driv-
ers based on expert assessments.

Thus, a literature research with about 50 sources including energy scenario studies
on both Europe, e.g., [7] and Germany, e.g., [8] derives statistical descriptors of the
drivers’ values. A statistical derivation of a probability distribution of parameter values
from different studies is impossible. Instead, we use truncated normal distributions,
which are defined by the collected statistical descriptors, which results in consistent
REMuix instances and thus, various scenarios to be passed to the solver.

2.2 Parallel computing of multiple optimization models using PIPS-IPM++

Each model instance to be solved by PIPS-IPM++ has to be annotated, which means
that variables and constraints are assigned to independent blocks to be treated in parallel
by the solver. Despite a large variety of conceivable criteria to define these blocks, we
annotate each model instance into time blocks, which represent predefined time slices
in the modeled operation horizon. We need to stress that the available computing hard-
ware determines how model instances are annotated. In our case, the corresponding
limitations are a maximal total wall-clock time of 24h and a maximum of 192 GB RAM



per compute node. We annotate the problem instances into 730 blocks to be solved in
216 MPI tasks distributed across 18 compute nodes with 4 cores per task. PIPS-IPM++
is executed using the hierarchical approach, which is for our application the best setup
to avoid memory issues. As a result, we are able to solve model instances with about
94.6M variables (including 3713 linking variables and thereof 3356 globally) and
91.2M constraints (ca. 367k locally and 693 linking globally) in about 14 hours. After
a successful solve, a post-solving process creates a solution as GDX file to be used by
subsequent workflow steps (indicator models).

2.3 Indicator Assessment

To assess the various aspects of future energy system scenarios, we coupled several
models (see section 2.5) for a more comprehensive analysis of the solved ESOM in-
stances. For that, 37 indicators [9] are defined, which are computed by indicator models
(e.g., an agent-based model that simulates the behavior of stakeholders at the electricity
market for each scenario). For some indicators, the interpretation is clear, e.g. system
costs or CO emissions — lower is better. However, for some indicators this is less clear.
Therefore, indicators are scored in respect to the overall mean of all scenarios. If it is
above or below one standard deviation in the desired direction (if possible), it is con-
sidered for further investigation. Scenarios that have a lot of these indicators, are se-
lected and dubbed points of interest.

2.4 Workflow automatization

The overarching goal of our workflow automatization is to provide a basis for ana-
lyzing a large number of scenarios, but also to allow massively parallel implementation
on HPC with automatic data exchange. The challenge is to maintain a bug-free work-
flow consisting of dozens of scripts or program calls, which are linked in a serial man-
ner and are subject to continuous development. Hence, any change in just one compo-
nent might break the whole workflow. I, whereas bugs are detected at the end of the
workflow by persons who are not in charge of the component that causes the unex-
pected behavior at the start. In addition to the already existing HPC software stack, we
had to install about 28 software packages, each with its own dependencies. Parser
scripts used for data transformation require exception handling, which were usually not
implemented initially. Nevertheless, replacing broken workflow components is not al-
ways possible, e.g., replacing PIPS-IPM++ by a commercial solver.

To keep an overview of this complex workflow we extended the software JUBE
[10], which manages the tailor-made naming scheme and hierarchical data structure
consisting of ~ 1.000 directories and ~ 42.000 files and almost 1 TB of data in total.

The JUBE extension introduces another layer of parallelism to the workflow besides
the solver resulting in a reduction of the total workflow runtime. Implementing this
exchange of independent and highly specialized software in a stable manner took a team
of 10 about 1.5 years, calculations took about 550.000 core hours.

The next section presents these results in condensed form.



3 Results

First, we cluster indicators and inputs. For robustness reasons, both k-means and k-
medoids are employed, using both the BIC and GAP method to determine the optimal
number of clusters. For 1000 scenarios with a low spatial resolution leads not to dis-
cernible clusters. Hence, we evaluate a lower number of highly resolved ESOMs. As
shown in Fig. 2 (indicators are collapsed into two dimensions), we observe three clearly
delineated clusters. The first cluster (green) is in-between extremes for most indicators.
The second one (red) is opposite to the first one with the highest dependencies on nat-
ural gas, more CO2-emissions, but high technological flexibility to adjust to fluctuations
in demand and supply. The third cluster (blue) subsumes power systems with high
shares of renewables (RE-share), low CO,-emissions, high demand and somewhat
higher system costs, but less capability for flexible load-balancing.
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Fig. 2. Scenario clusters for the two main dimensions

Correlations between indicators are as expected, e.g., a high RE-share corresponds
to low CO2-emissions, etc. This lends credibility to scenario generation and analysis.

Points of interest are all scenarios where a majority of indicators show values one
standard deviation above (e.g. RE-share) or below (e.g., CO2-emissions) the mean of
all scenarios. Overall, there are few points of interest, i.e. systems where many indica-
tors would point to a system that is satisfactory concerning system adequacy, security
of supply, and economic performance. Differences between scenarios are small, i.e. t-
tests between potential “good” and “bad” systems are not significant.

4 Discussion and Conclusion

This paper addresses three problems of current energy systems analysis, i.e. compu-
tational limitations, model results that are highly dependent on varying assumptions



and the limited perspectives of single models on only some aspects?. By implementing
a complex and scalable HPC work flow through coupling a number of specialized mod-
els, application of PIPS-IPM++, and a comprehensive set of indicators, this paper pro-
poses a solution to these problems. However, some limitations remain. First, the initial
high number of scenarios had a too low spatial resolution. Hence, relevant bottlenecks
could not be identified. After switching to a much higher spatial resolution, not too
many high-resolution scenarios could be calculated, yet. Second, POls are defined sta-
tistically, not from a system perspective.

What is achieved? Our results pave the way to more robust energy system modeling,
since they cover a large range of assumptions and future pathways. We found a few
scenarios that seem to satisfy a number of desiderata for a near-optimal energy system.
Our indicator set is easily reusable and allows a comprehensive assessment of energy
systems, most notably system adequacy, security of supply, sustainability, and eco-
nomic performance

The established broad scale analysis can be reused for future analyses which also put
emphasis on systems beyond the power sector and solving of mixed-integer linear pro-
grams. Due to the HPC capability and automation this workflow provides full scalabil-
ity, which can be further improved by making the parallel solver PIPS-IPM++ more
robust and computationally more performant.

5 References

1. Cao, K.-K,, et al. Classification and evaluation of concepts for improving the performance of
applied energy system optimization models. Energies 12.24 (2019)

2. Gils, H.C., et al. Model-related outcome differences in power system models with sector cou-
pling—Quantification and drivers. Renew. Sustain. Energy Rev. 159 (2022)

3. Ringkjgb, H.-K. et al. A review of modelling tools for energy and electricity systems with
large shares of variable renewables. Renew. Sustain. Energy Rev. 96 (2018)

4. Rehfeldt, D., et al. "A massively parallel interior-point solver for LPs with generalized arrow-
head structure, and applications to energy system models. Eur. J. Oper. Res. 296.1 (2022)

5. Gils, H.C., et al. Integrated modelling of variable renewable energy-based power supply in
Europe. Energy 123 (2017)

6. Deissenroth, M., et al. Assessing the plurality of actors and policy interactions: agent-based
modelling of renewable energy market integration. Complexity 2017 (2017)

7. Ruiz, P., et al. ENSPRESO-an open, EU-28 wide, transparent and coherent database of wind,
solar and biomass energy potentials. Energy Strategy Rev. 26 (2019)

8. Bernath, C., et al. Langfristszenarien fir die Transformation des Energiesystems in Deutsch-
land—Modul 3: Referenzszenario und Basisszenario. Karlsruhe, Germany (2017)

9. Energy System Indicators, doi: 10.23728/b2share.fe700138419243c0817425a0d2d5ae32.

10. JUBE Benchmarking Environment 2008-2022, Available: http://www.fz-juelich.de/jsc/jube

! Acknowledgement: We thank our colleagues from UNSEEN, a project funded by the Ger-
man Federal Ministry for Economic Affairs and Climate Action, grant number FKZ 03EI1004.
We gratefully acknowledge the Gauss Centre for Supercomputing e.V. (Www.gauss-centre.eu)
for funding this project by providing computing time through the John von Neumann Institute
for Computing on the GCS Supercomputer JUWELS at Julich Supercomputing Centre (JSC).


http://www.fz-juelich.de/jsc/jube

