001     911755
005     20240712113052.0
024 7 _ |a 10.1021/acs.chemmater.2c02376
|2 doi
024 7 _ |a 2128/33301
|2 Handle
024 7 _ |a WOS:000928908600001
|2 WOS
037 _ _ |a FZJ-2022-05007
082 _ _ |a 540
100 1 _ |a Stolz, Lukas
|0 P:(DE-Juel1)181055
|b 0
|u fzj
245 _ _ |a Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique
260 _ _ |a Washington, DC
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671710070_17992
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrochemical impedance spectroscopy (EIS) using alternating currents is a widely established technique to investigate kinetic aspects of batteries and their components, though it requires an interruption of battery operation with extra measurement time and effort. In this work, EIS is compared with the conventional galvanostatic (constant current) technique, which is based on direct currents, being the standard operation mode of batteries. Data from constant current measurements not only are representing application conditions but also are automatically and continuously generated during routine charge/discharge processes, i.e., without extra measurement efforts, and do give kinetic insights via the characteristic overvoltage (= resistance-reasoned voltage rise/decrease), as well. In fact, distinguishing between even very similar values for ohmic (RΩ), charge transfer (Rct), and mass transport (Rmt) resistances can be done via analysis of overvoltage data from constant current measurements, as exemplarily demonstrated in symmetric Li||Li and LiNi0.6Mn0.2Co0.2O2 (NMC622)||Li cells with poly(ethylene oxide)-based solid polymer electrolyte, finally proving their validity. From a practical point of view, direct-current methods can be beneficial for R&D of kinetic aspects in batteries, as data is directly obtained and, thus, application-oriented.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gaberšček, Miran
|0 0000-0002-8104-1693
|b 1
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.2c02376
|g Vol. 34, no. 23, p. 10272 - 10278
|0 PERI:(DE-600)1500399-1
|n 23
|p 10272 - 10278
|t Chemistry of materials
|v 34
|y 2022
|x 0897-4756
856 4 _ |u https://juser.fz-juelich.de/record/911755/files/Invoice_APC600364553.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/911755/files/acs.chemmater.2c02376.pdf
909 C O |o oai:juser.fz-juelich.de:911755
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2021
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CHEM MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|2 APC
|0 PC:(DE-HGF)0122
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21