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OUTLINE

Simulation libraries in Materials Science in the pre-exascale era

Exploiting correlation in plane wave DFT

Algorithm and dependence on HPC kernels

Benchmarking tests

Features and usage
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SIMULATION SOFTWARE IN MATERIALS SCIENCE
Some guiding principles

exploit available knowledge.

increase the parallelism of complex tasks.

facilitate performance portability

Facilitating parallelism and HPC

A flexible interface that can accommodate knowledge as input;

An algorithm design that avoids inter-node communication;

Use of specialized libraries (MKL, cuBLAS, BLIS, etc.) to maximizes the extraction of many-
and multi-core performance;

A stable developing team quickly porting the core kernels to the latest platforms.
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A KNOWLEDGE-INCLUSIVE OPTIMIZED EIGENSOLVER
License: open source — BSD 3.0

GitHub: https://github.com/ChASE-library/ChASE

Docs:
https://chase-library.github.io/ChASE/index.html

Latest release: v. 1.1.2 – June 13th 2022

Reference key: https://doi.org/10.1145/3313828

Reference key: https://doi.org/10.1145/3539781.3539792

Highlights

Sequences of dense eigenproblems: exploits correlation between adjacent problems
Modern C++ interface: depends only on LAPACK and BLAS functions
Performance portable: excellent strong- and weak-scale performance
Easy-to-integrate: ready-to-use Fortran to C++ interface
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DFT SELF-CONSISTENT FIELD CYCLE
The Schrödinger equation for a all the dgrees of freedom of a multi-atom systems translates into a
set of coupled non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

∀ a solve ĤKSϕa(r) =
(
− ℏ2

2m
∇2 + V0(r)

)
ϕa(r) = ϵaϕa(r)

Initial guess
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Compute discretized
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equations

Solve a set of
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SEQUENCES OF EIGENPROBLEMS
Adjacent iteration cycles

ITERATION (ℓ)

P(ℓ)
k1

(X(ℓ)
k1

,Λ
(ℓ)
k1

)

P(ℓ)
k2

(X(ℓ)
k2

,Λ
(ℓ)
k2

)

P(ℓ)
kN

(X(ℓ)
kN

,Λ
(ℓ)
kN

)

X ≡ {x1, . . . , xn}

direct

solver

direct

solver

direct

solver

ITERATION (ℓ+ 1)

P(ℓ+1)
k1

(X(ℓ+1)
k1

,Λ
(ℓ+1)
k1

)

P(ℓ+1)
k2

(X(ℓ+1)
k2

,Λ
(ℓ+1)
k2

)

P(ℓ+1)
kN

(X(ℓ+1)
kN

,Λ
(ℓ+1)
kN

)

Λ ≡ diag(λ1, . . . , λn)

direct

solver

direct

solver

direct

solver

Next
cycle

Member of the Helmholtz Association November 16, 2022 Slide 5



SEQUENCES OF EIGENPROBLEMS
Adjacent iteration cycles

ITERATION (ℓ)

P(ℓ)
k1

(X(ℓ)
k1

,Λ
(ℓ)
k1

)

P(ℓ)
k2

(X(ℓ)
k2

,Λ
(ℓ)
k2

)

P(ℓ)
kN

(X(ℓ)
kN

,Λ
(ℓ)
kN

)

X ≡ {x1, . . . , xn}

direct

solver

direct

solver

direct

solver

ITERATION (ℓ+ 1)

P(ℓ+1)
k1

(X(ℓ+1)
k1

,Λ
(ℓ+1)
k1

)

P(ℓ+1)
k2

(X(ℓ+1)
k2

,Λ
(ℓ+1)
k2

)

P(ℓ+1)
kN

(X(ℓ+1)
kN

,Λ
(ℓ+1)
kN

)

Λ ≡ diag(λ1, . . . , λn)

direct

solver

direct

solver

direct

solver

Next
cycle

Member of the Helmholtz Association November 16, 2022 Slide 5



SEQUENCES OF EIGENPROBLEMS
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AN ALTERNATIVE SOLVING STRATEGY
Adjacent cycles
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EIGENPROBLEM SEQUENCE
FLAPW matrices: type AuAg DENSE, N = 13379, nev = 972 and nex = 40
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Supplementary material
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CHEBYSHEV SUBSPACE ITERATION ALGORITHM

INPUT: Hermitian matrix A, tol, deg — OPTIONAL: approximate eigenvectors V, extreme
eigenvalues {λ1, λNEV, λMAX}.

OUTPUT: NEV wanted eigenpairs (Λ,V).
1 Lanczos DoS step. Identify the bounds for {λ1, λNEV, λMAX} corresponding to the wanted

eigenspace.

REPEAT UNTIL CONVERGENCE:
2 Optimized Chebyshev filter. Filter a block of vectors V ←− p(A)V with optimal degree.
3 Re-orthogonalize the vectors outputted by the filter; V = QR.

4 Compute the Rayleigh quotient G = Q†AQ.

5 Compute the primitive Ritz pairs (Λ,Y) by solving for GY = YΛ.

6 Compute the approximate Ritz pairs (Λ,V ← QY).

7 Compute the residuals of the Ritz vectors ∥AV − VΛ∥.
8 Deflate and lock the converged vectors.

END REPEAT
Legend: Original algorithnic contribution, 2D MPI parallel, executed redundantly on each process
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CHEBYSHEV SUBSPACE ITERATION ALGORITHM

Start

input: N , A
input: nev, nex, tol, deg

m[nev] ← deg
size(X̂) ← 0

(λ̃1, λ̃nev+nex, λ̃N , V̂ ) ← lanczos

V̂ ← filter(V̂ ,m)

Q̂ ← orthonormalize(
[
V̂ X̂

]
)

(V̂ , Λ̃) ← Rayleigh-Ritz(A, Q̂) res [ ] ← residuals(V̂ , Λ̃)

(V̂ ,Λ, X̂) ← defl&lock(V̂ , Λ̃, res)

(λ̃1, λ̃nev+nex) ← (min, max)
[
Λ Λ̃

]

m ← degrees(tol,res)
sort(res,V̂ , Λ̃;m)

size(X̂) ≥ nev

output: (X̂,Λ), res
output: timers, decorators

End

yes

no
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DIVIDE AND CONQUER
Chebyshev polynomials
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THE CORE OF THE ALGORITHM: CHEBYSHEV FILTER
In practice

Three-terms recurrence relation
Cm+1 (t) = 2tCm (t)− Cm−1 (t) ; m ∈ N, C0 (t) = 1, C1 (t) = t

Vm
.
= pm(Ã) V with Ã = A− cIN

FOR: i = 1→ deg− 1

Vi+1 ← 2
σi+1

e
Ã × Vi − σi+1σi Vi−1 xHEMM

END FOR.
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WORKLOAD DISTRIBUTION

Lanczos <0.2%

Chebyshev filter

�88%

�3.2%

�8.7%

Residuals Convergence

Rayleigh-Ritz

Au98Ag10 - n=8,970 - 32 cores. xHEMM most expensive part
Parallelizes easily over

MPI
GPUs

Good weak scaling
Recall: Matrix dimensions skewed
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PARALLELIZATION OF THE CHEBYSHEV FILTER
Targets

A simple and efficient scheme for data distribution and communication using MPI
An economic paradigm that successively performs

C← αAB + βC, B← αAC + βB. (1)

using customized multi-GPU HEMM kernel

Desired features

Develop a scheme for parallelization of the 3-terms recurrence relation Chebyshev filter.
Harness the power of GPUs.
Limited GPU memory⇒ multiple GPU nodes
Minimize communication and redistribution of data.
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MATRIX AND VECTORS DISTRIBUTION
Each node gets the appropriate part of A, B and C.
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. . .
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Distributed HEMM scheme
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ENVIRONMENT AND EIGENPROBLEM TYPE
JURECA-DC GPU partition

2× 64 cores AMD EPYC 7742 CPUs @ 2.25 GHz (16× 32 GB DDR4 Memory)
4 NVIDIA Tesla A100 GPUs (4× 40 GB high-bandwidth memory).
ChASE (relase 1.1.2) is compiled with GCC 9.3.0, OpenMPI 4.1.0 (UCX 1.9.0), CUDA 11.0
and Intel MKL 2020.4.304.
All computations are performed in double-precision.

Table: Spectral information for generating test matrices. In this table, we have k = 1, · · · , n.

Matrix Name Spectral Distribution

UNIFORM (UNI) λk = dmax(ϵ+
(k−1)(1−ϵ)

n−1 )

GEOMETRIC (GEO) λk = dmaxϵ
n−k
n−1

(1-2-1) (1-2-1) λk = 2− 2 cos( πk
n+1 )

WILKINSON (WILK) All positive, but one, roughly
in pairs.

PASC22 proceedings: https://doi.org/10.1145/3539781.3539792
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EVALUATING GPU/CPU BINDING CONFIGURATIONS
Uniform matrix: N = 30000 × p, p = 1, 2, . . . , 12, nev = 2250 and nex = 750

Filter absolute performance for 1,2 and 4 MPI rank
with 32 threads each and 4 GPU
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Only one iteration of subspace;
FP64 Tensor cores used automatically and selectively (not always) ⇒ Absolute performance;
Filter performs best with 4MPI × 1 GPU;
Other BLAS and LAPACK ops performs better with 1MPI × 4 GPUs.

Sweetspot analysis for CPU −→ 16 MPI ranks and 8 threads per node as optimal.
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STRONG SCALING
Artificial matrix: type UNIFORM, N = 130000, nev = 1000 and nex = 300

CPU scaling
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GPU scaling
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4 × GPUs with 1 MPI task per node
Only HEMM scales well
Other operations are done redundantly and become new bottleneck.
GPU memory is a constraint on size of nev.
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GPU VS CPU
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WEAK SCALING
Artificial matrices: type UNIFORM, from N = 30000 until N = 360000, nev = 2250 and nex = 750

CPU scaling
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GPU scaling
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4 × GPUs with 1 MPI task per node;
ChASE scales linearly;
Time doubles every time matrix size quadruples (CPU) and triples (GPU);
Filters scales very well;
Confirm QR, RR, Resid need a revised parallel computational scheme.
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CHASE VS ELPA2
Strong scaling. Hermitian matrix 76k (IN2O3). nev=800. Average over 15 repetitions.

ELPA2 version 2020.11.001
Compiled with GCC 10.3.0, OpenMPI 4.1.1, Intel MKL 2021.2.0 and CUDA 11.3 with CUDA sm_80
The MPI core and GPU numbers per node is respectively 32 and 4. Block size is 16.
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NEW PARALLEL ALGORITHM
for QR, Rayleigh-Ritz and Residuals

Chase Algorithm

Changed workspace design =⇒ reduction in memory consumption
1-D distribution for array of vectors in QR factorization, Rayleigh-Ritz (RR) projection, and
Residual computation
Hybrid usage of Householder- and Cholesky-QR for the QR factorization
Hiding communication with computation within for RR projection and Residual computation
CPU version only on devel branch (GPU implementation under development), soon to be
released
Much better strong and weak scaling
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STRONG SCALING
Artificial matrix: type UNIFORM, N = 130000, nev = 1000 and nex = 300

Old CPU scaling
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New CPU scaling
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WEAK SCALING
Artificial matrices: type UNIFORM, from N = 30000 until N = 360000, nev = 2250 and nex = 750

Old CPU scaling
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CHASE ABSTRACT CLASS
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USE CASES AND FEATURES

ChASE is templated for Real and Complex type.

ChASE is also templated to work in Single and Double precision.

ChASE is currently designed to solve for the extremal portion of the eigenspectrum. The

library is particularly efficient when no more than 20% of the eigenspectrum is sought after.

ChASE currently handles standard eigenvalue problems.

ChASE can receive as input a matrix of vector V̂

For a fixed accuracy level (residual tolerance), ChASE can optimize the degree of the

Chebyshev polynomial filter so as to minimize the number of FLOPs necessary to reach

convergence.
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CHASE LIBRARY
MPI configurations

Shared memory build: to be used on only one computing node or on a single CPU
MPI + X build: to be used on multi-core homogeneous CPU clusters
GPU build: to be used on heterogeneous computing clusters. Currently we support the use of
one or more GPU cards per computing node in a number of flexible configurations

Usage
Free standing library compiles with CMake
Used a submodule by linking the library

Parallel distribution
Custom 2D block distribution
2D block-cyclic distribution (a-la-ScaLAPACK)

Fortran and C interfaces
Integrated in devel version of FLEUR (CPU only)
Integrated in devel version of Quantum ESPRESSO (CPU only)
Integrated in release version of Jena BSE code (both CPU and GPU version)
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ON LINE DOCUMENTATION
https://chase-library.github.io/ChASE/index.html
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LESSONS LEARNED
...in the last 5 years

1 Exploiting domain knowledge may accelerate computation.

2 flexible abstract interface separating algorithm from implementation −→ facilitates porting

performance;

3 Extracting node-level performance using specialized kernels is not trivial −→ sweetspot

analysis or detailed heuristics are necessary to understand the optimal configuration;

4 Avoiding communication may come at the cost of increasing memory usage an decreased

parallelism −→ need to strike a careful trade-off (new 1D parallelization of some kernels);
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OUTLOOK

Porting of new QR/RR/Resid parallelization to multi-GPU −→ January 2023

Porting to AMD GPUs with aim at new Jupyter exascale modular cluster −→ June 2023

Nice to have: integration with ELSI platform

Porting to ARM-based platforms −→ sometimes in 2023

Extension to interior eigenproblems through rational spectral filters −→ September 2023

Long term: extension to non-Hermitian eigenproblems.

References
EDN, Blügel, Bientinesi – http://dx.doi.org/10.1016/j.cpc.2012.03.006 (2012)
Berljafa, Wortmann, EDN – https://10.1002/cpe.3394 (2014)
Winkelmann, Springer, EDN – https://doi.org/10.1145/3313828 (2019)
Zhang, Achilles, Winkelmann, Haas, Schleife, EDN – https://doi.org/10.1016/j.cpc.2021.108081 (2021)
Wu, Davidovic, Achilles, EDN – https://doi.org/10.1145/3539781.3539792 (2022)
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SEQUENCES OF EIGENPROBLEMS
Definitions and solving strategies

Definition: Eigenproblem sequence

A sequence of eigenproblems is a finite and index-ordered set of problems
{P}N

.
= P(1) · · ·P(ℓ) · · ·P(N) with same size = n such that the eigenpairs of P(ℓ) are used (directly or

indirectly) to initialize P(ℓ+1).

Current solving strategy

The set of generalized eigenproblems P(1) . . .P(ℓ)P(ℓ+1) . . .P(N) is handled as a set of disjoint
problems N × P;

Each problem P(ℓ) is solved independently using a direct solver as a black-box from a
standard library (i.e. ScaLAPACK).
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CORRELATION BETWEEN EIGENPROBLEMS
Definition and solving strategies

Definition: Correlation
Two adjacent problems P(ℓ+1) and P(ℓ) are said to be correlated when the eigenpairs
(X(ℓ+1),Λ(ℓ+1)) have some relation with the eigenpairs (X(ℓ),Λ(ℓ)).

Uncovering the correlation −→ extracting information from simulations

Extracted the matrices of eigenproblems P(1), . . . ,P(N) from the FLAPW code by running a full
simulation;
Computed the solutions of the full sequence,

collected data on angles b/w eigenvectors of adjacent eigenproblems;

Θ
(ℓ)
ki

≡ {θ1, . . . , θn} = diag
(

1 − ⟨X(ℓ−1)
ki

, X̃(ℓ)
ki

⟩
)

uncovered evolution of eigenvectors along the sequence

for fixed ki θ
(2)
j ≳ θ

(3)
j ≳ · · · ≳ θ

(N)
j : θ

(2)
j ≫ θ

(N)
j
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j
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ANGLES EVOLUTION
An example

Example: a metallic compound at fixed k
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Evolution of subspace angle for eigenvectors of k−point 1 and lowest 75 eigs

Iterations (2 −> 22)
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THE CORE OF THE ALGORITHM: CHEBYSHEV FILTER
The basic principle

Theorem
Let |γ| > 1 and Pm denote the set of polynomials of degree smaller or equal to m. Then the extremum

min
p∈Pm,p(γ)=1

max
t∈[−1,1]

|p(t)|

is reached by

pm(t)
.
=

Cm(t)
Cm(γ)

.

where Cm is the Chebyshev polynomial of the first kind of order m, defined as

Cm(t) =
{

cos (m arccos(t)) , t ∈ [−1, 1] ;
cosh (m arccosh(t)) , |t| > 1.
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SUBSPACE ITERATION
Power Iteration: Given a generic vector v =

∑n
i=1 sixi

vm = Amv =

n∑

i=1

si Amxi =

n∑

i=1

si λ
m
i xi = s1x1 +

n∑

i=2

si

(
λi

λ1

)m

xi ∼ s1x1

Subspace iteration + Chebyshev polynomials:

vm = pm(A)v =

n∑

i=1

si pm(A)xi =

n∑

i=1

si pm(λi)xi

≈
nev∑

i=1

si
Cm(

λi−c
e )

Cm(
γ−c

e )
xi +

n∑

j=nev+1

sjxj

Reorthogonalization + Rayleigh− Ritz

≈
nev∑

i=1


sixi +

n∑

j=nev+1

Si
j

1
|ρi|m

xj




∼ ∑nev
i=1 sixi
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MPI SCHEME

Step 1

Calculate AB on the GPU, return it to CPU and save in temporary Ctmp.

Ai,1
B1

Ci

GPU

Ai,2
B2

Ci

GPU

. . . Ai,n
Bn

Ci

GPU
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MPI SCHEME

Step 2

Perform reduction (summation) on nodes in each row. Then save αCtmp + βC in C.

Ai,1
B1

Ci Ai,2
B2

Ci . . . Ai,n
Bn

Ci

REDUCTION
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NEXT STEP:
Redistribution of C is avoided thanks to the simple observation that A = AH

A⋆
m,n

A⋆
m,n−1

A⋆
m,n−2

. . .

A⋆
m,1

...

...

...

. . .

...

A⋆
2,n

A⋆
2,n−1

A⋆
2,n−2

. . .

A⋆
2,1

A⋆
1,n

A⋆
1,n−1

A⋆
1,n−2

. . .

A⋆
1,1

Cm

...

C2

C2

×

Repeat the previous steps for αAHC + βB
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MPI SCHEME

Step 3

Calculate AC on the GPU, return it to CPU and
save in temporary Btmp.

A⋆
1,j

C1 Bj
GPU

...

A⋆
2,j

C2 Bj
GPU

A⋆
m,j

Cm Bj
GPU

Step 4

Perform reduction on nodes in each column.
Then save αBtmp + βB in B.

A⋆
1,j

C1 Bj

...

A⋆
2,j

C2 Bj

A⋆
m,j

Cm Bj

REDUCTION
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MPI SCHEME

Step 3

Calculate AC on the GPU, return it to CPU and
save in temporary Btmp.

A⋆
1,j

C1 Bj
GPU

...

A⋆
2,j

C2 Bj
GPU

A⋆
m,j

Cm Bj
GPU

Step 4

Perform reduction on nodes in each column.
Then save αBtmp + βB in B.

A⋆
1,j

C1 Bj

...

A⋆
2,j

C2 Bj

A⋆
m,j

Cm Bj

REDUCTION
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MPI SCHEME: RECAP

Steps 1-4 describe two cycles of Chebyshev iteration.
Performing 3-terms recurrence relation within the Chebyshev iterations relies on alternating
between both kinds of cycles.
Cycle 1: Perform A× B, and then reduce across every row of the processing grid.
Cycle 2: Perform A⋆ × C, and then reduce on every column of the processing grid.
Most of the communication is spent in a MPI_Allreduce.

Back to presentation
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MULTI-GPU MATRIX MULTIPLICATION SCHEME

Guiding principle

The distribution of Ai,j on GPUs plays a guiding role
The distribution of Bj and Ci is a result of the distribution of Ai,j.
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MULTI-GPU MATRIX MULTIPLICATION SCHEME

Guiding principle

The distribution of Ai,j on GPUs plays a guiding role
The distribution of Bj and Ci is a result of the distribution of Ai,j.
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EXTRACTING PERFORMANCE AT THE NODE-LEVEL
Sweetspot analysis for weak scaling benchmark tests on JURECA-DC

nodes tasks threads ChASE time (s) Lanczos (s) Filter (s) QR (s) RR (s) Resid (s)

1 1 128 351.81 27.43 275.78 8.30 24.53 13.61
1 2 64 161.53 13.48 126.92 3.93 9.54 6.57
1 4 32 93.41 6.75 69.87 3.85 7.70 4.68
1 8 16 75.93 3.81 53.54 5.30 8.06 4.95
1 16 8 83.87 5.95 53.45 8.50 12.78 3.05
1 32 4 102.05 2.46 55.86 16.57 23.49 3.59
1 64 2 146.32 2.97 59.20 32.64 45.36 6.10
1 128 1 272.09 3.96 65.46 101.95 93.12 7.57

16 1 128 991.63 37.63 305.02 25.72 426.70 194.37
16 2 64 219.98 20.10 136.22 16.55 20.60 25.40
16 4 32 127.43 10.84 72.88 18.02 18.61 6.53
16 8 16 121.25 8.90 56.49 29.47 20.68 5.42
16 16 8 160.03 7.54 57.28 46.86 40.87 7.35
16 32 4 239.42 2.97 56.03 96.70 73.71 9.93
16 64 2 412.08 3.47 57.51 191.06 148.86 11.10
16 128 1 933.09 4.90 59.57 543.47 304.30 20.81

1 node N = 30,000.0, 16 nodes N = 120,000.0, nev = 2250 and nex = 750.
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COMPARING CHASE-CPU AND CHASE-GPU
with artificial matrices

Matrix size: 20k× 20k. nev and nex are 1500 and 500, respectively. Statistics for each test are
obtained over 20 runs. Instability of cusolverXgeqrf.

Matrix Iter. Matvecs ChASE-CPU Runtime (seconds)
All Filter QR RR Resid

1-2-1 13 466614 272.28± 5.28 176.46± 4.60 31.69± 1.27 37.45± 1.64 20.99± 0.67
GEO 8 285192 165.39± 1.86 108.02± 1.75 19.19± 0.59 20.64± 1.22 12.14± 0.54
UNI 5 163562 101.27± 1.98 62.17± 1.47 12.05± 0.53 13.91± 0.98 7.97± 0.60

WILK 9 248946 155.44± 2.64 95.68± 1.77 21.53± 0.88 20.62± 1.25 12.09± 0.47

Matrix Iter. Matvecs ChASE-GPU Runtime (seconds)
All Filter QR RR Resid

1-2-1 13 466614 31.39± 0.09 14.38± 0.02 2.59± 0.01 8.41± 0.09 5.24± 0.04
GEO 8 285192 18.57± 0.05 8.76± 0.02 1.58± 0.01 4.58± 0.04 2.96± 0.02
UNI 5 163562 11.79± 0.03 5.06± 0.00 1.00± 0.00 3.11± 0.04 1.96± 0.02

WILK 8 246924 17.22± 0.05 7.63± 0.02 1.59± 0.00 4.45± 0.04 2.90± 0.02
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PARALLEL EFFICIENCY
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Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ra
lle

l e
ffi

ci
en

cy
1.0

0.85

0.79
0.77

0.73
0.69 0.7 0.69

0.67
0.65

0.64
0.63

1.0

0.58

0.42

0.3

0.19
0.18

0.15
0.14

0.1 0.11
0.08

0.07

1.0

0.68

0.58

0.53

0.49
0.47

0.43
0.43

0.41 0.43
0.43

0.42

1.0

0.42

0.45

0.57

0.53

0.35

0.31

0.24
0.21

0.16
0.13

0.12
Filter (CPU)
Resid (CPU)

Filter (GPU)
Resid (GPU)

Member of the Helmholtz Association November 16, 2022 Slide 43


	Simulation libraries in Materials Science in the pre-exascale era
	Exploiting correlation in plane wave DFT
	Algorithm and dependence on HPC kernels
	Benchmarking tests
	Features and usage
	Supplementary material
	Correlated eigenproblems in DFT
	Chebyshev filter
	Parallelization
	Benchmarking tests


