
Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

ChASE - A Distributed Hybrid CPU-GPU Eigensolver for
Large-scale Hermitian Eigenvalue Problems

Xinzhe Wu2, Davor Davidović1, Sebastian Achilles2, Edoardo Di Napoli2

1Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia

2Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

PASC22 Conference,
27 - 29 June 2022, Basel, Switzerland

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Motivation I

The dense Hermitian eigenproblems are their core computational problem in
numerous research problems → e.g. condensed matter physics
Computing eigenvectors and eigenvalues for extremely large matrices is still a
significant computational challenge
There are only a few existing implementations capable of utilizing the distributed
heterogeneous (GPU-based) systems
But, up to our knowledge no library is able to successfully exploit GPUs for dense
eigenproblems with size larger than 100000

The main challenges
The communication overhead and how to exploit the full potential of the
heterogeneous multi-GPU based systems

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Motivation I

The dense Hermitian eigenproblems are their core computational problem in
numerous research problems → e.g. condensed matter physics
Computing eigenvectors and eigenvalues for extremely large matrices is still a
significant computational challenge
There are only a few existing implementations capable of utilizing the distributed
heterogeneous (GPU-based) systems
But, up to our knowledge no library is able to successfully exploit GPUs for dense
eigenproblems with size larger than 100000

The main challenges
The communication overhead and how to exploit the full potential of the
heterogeneous multi-GPU based systems

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Table of contents

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Outline

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Problem formulation

Eigenvalue problem
Partial diagonalization of nev eigenpairs of standard symmetric eigenvalue problem:

A V = Λ V

A is a n × n symmetric/Hermitian matrix, V is a n × nev rectangular and Λ is a
nev × nev diagonal matrix.

The problems we tackle
A is symmetric or Hermitian
Only a small fraction of extremal eigenpairs are sought-after
Large-scale eigenproblems (O(100000))

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

State-of-the-art solutions

Direct solvers: reduce matrix to condensed form (tridiagonal/band) and then
computes eigenpairs (MRRR, D&C, QR) → complexity O(n3)

Iterative solvers: project the eigenproblem on a smaller, gradually improved
search space. Approximate eigenpairs from the search space.

Existing solutions
Iterative methods have proved to be a better choice if only a subset of eigenpairs
are required!
Direct solvers (libraries): ScaLAPACK, EigenEXA, ELPA
Iterative solvers: FEAST and PFEAST (for dense Hermitian problems)
(up to our knowledge) only ELPA supports the execution on the distributed GPUs
But there are numerous shared-memory solutions: MAGMA, cuSOLVER(-MG), etc.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Outline

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

ChASE library

ChASE is open source (BSD 2.0
licences)
GitHub: https://github.com/
ChASE-library/ChASE

https://doi.org/10.1145/3313828

Highlights
Chebyshev polynomial with degree optimization to accelerate convergence
Accurately approximates the extremal eigenvalues of dense Hermitian
eigenproblems
Particularly effective on solving a sequence of correlated eigenproblems
Modern C++ interface: easy-to-integrate in application codes

https://github.com/ChASE-library/ChASE
https://github.com/ChASE-library/ChASE
https://doi.org/10.1145/3313828

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

ChASE algorithm - pseudocode

1: Set the initial vector of degrees m1:nev+nex ← deg
2: Lanczos step: Compute spectral estimates µ1 and µnev+nex for lower/upper bound

of eigenspectrum and bsup > λn
3: Set initial estimate vectors V̂
4: while size(Ŷ < nev) do
5: Chebyshev filter: Filter a block of vectors V̂ with a vector of degree m
6: Re-orthogonalize vectors as Q ← QR([Ŷ V̂])
7: Compute the Rayleigh quotient: G = Q∗AQ
8: Compute primitive Ritz pairs: (V̂ , Λ̂) by solving GZ = ΛZ
9: Compute approximate Ritz pairs: V̂ ← QZ

10: Compute residuals of eigenpairs Res(V̂ , Λ̃)
11: Deflate and Lock the converged eigenvectors and values from (V̂ , Λ̂)
12: Optimize the vector of polynomial degrees m
13: end while

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

ChASE algorithm

Can be cast almost entirely in terms of BLAS-3 operations → easily exploits
optimized BLAS and LAPACK libraries (e.g. MKL, OpenBLAS, libFLAME)
Existing ChASE take advantage of optimized BLAS/LAPACK libraries for QR,
Rayleigh-Ritz
Except for the most time consuming kernel - Hermitian matrix-matrix
multiplication used in:

Filter, Rayleigh-Ritz and Residual
Customized MPI scheme implementation

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Parallel implementation

Matrix A subdivided into 2D (square) grid of blocks, each one assigned to one MPI
processes in 2D block fashion
Block of vectors V̂ are split in a 1D block fashion and distributed among the row
communicators
Custom HEMM implementation for a 2D grid distribution of A

Adist =

 A0,0 A0,1

A1,0 A1,1

A2,0 A2,1

, V̂dist =

 V̂0 V̂1

V̂0 V̂1

V̂0 V̂1

, Ŵdist =

 Ŵ0 Ŵ0

Ŵ1 Ŵ1

Ŵ2 Ŵ2

 ,

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Chebyshev Filter

In the filter the Hermitian matrix-matrix multiplication appears as a three-terms
recurrence relation:

V̂i+1 = αi (A− γi In)V̂i + βi V̂i−1, i ∈ [1,m), (1)

m is the degree of Chebyshev polynomial, αi , βi , γi are scalar parameters of each
iteration i

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Chebyshev filter

The Vi is required to be redistributed between iteration i and i + 1 → additional
communication and memory copy
To avoid redistribution one can right-multiply with AH

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Outline

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Distributed ChASE

Current state
ChASE only offloads the HEMM operator to GPU (single GPU per MPI rank per
compute node)
Other routies are parallelized using optimized parallel BLAS/LAPACK routines

Multi-GPU ChASE
Use existing 2D block division and MPI 2D grid
Per MPI rank subdivide into 2D grid of blocks and statically distributed among
GPUs
The sub-blocks of A are copied to and remain in the GPU memory until ChASE
completes - avoids continuous memory copies to/from the GPU memory

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Distributed ChASE II

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Distributed ChASE III

Matrix A should fit in the aggregated memory of all available GPUs
Execution between the GPUs only within the MPI rank (e.g. GPUs on the same
node)
All other linear algebra routines (except HEMM) are computed redundantly on each
MPI process

The most time consuming kernels are offloaded to GPUs using cuBLAS and cuSolver
libraries (smaller matrix multiplications, QR)

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Memory requirements

Per MPI process memory requirements

Mcpu = pq + (p + q)ne + 2nen,

n is the rank of matrix A, ne = nev + nex is the largest dimension of the active
subspace, 2D MPI grid is defined as r × c , the local matrix held by each MPI rank is
p × q, where p = n

r and q = n
c .

Per GPU memory requirement

Mgpu =
pq

rgcg
+ 3max(

p

rg
,
q

cg
)ne + (2n + ne)ne ,

multiple GPUs can bind to an MPI process as a rg × cg 2D grid scheme.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Outline

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Test suite

Compute infrastructure
JURECA-DC supercomputer at Jülich Supercomputing Centre,
Node: two 64 cores AMD EPYC 7742 CPUs @ 2.25 GHz (512 GB DDR4 Memory)
and four NVIDIA Tesla A100 GPUs (4× 40 GB high-bandwidth memory)

Test matrices

Matrix Name Spectral Distribution
Uniform (Uni) λk = dmax(ε+ (k−1)(1−ε)

n−1)

Geometric (Geo) λk = dmaxε
n−k
n−1

(1-2-1) (1-2-1) λk = 2− 2 cos(πk
n+1)

Wilkinson (Wilk) All positive, but one, roughly in pairs.

All tests are performed in double precision arithmetic.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

MPI and GPU binding analysis

Multi-GPU ChASE allows different binding of GPUs to MPI ranks
We have tested 3 configurations (per node):

1 MPI rank bounded to 4 GPUs (1MPI×4GPUs)
2 MPI ranks bounded to 2 GPUs each (2MPI×2GPUs)
4 MPI ranks each bounded to 1 GPU (4MPI×1GPU)

Use-case
Number of compute nodes is p2, p = 1, . . . , 12
Matrices of type UNIFORM
Matrix sizes are 3× 104p (fixed computational load per node)
nev = 2250, nex = 750
20 repetitions

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

MPI and GPU binding analysis II

1 4 9 16 25 36 49 64 81 100 121 144
Number of nodes

15

20

25

30

TF
LO

P
S

/n
od

e

1MPI x 4GPUs
2MPI x 2GPUs
4MPI x 1GPU

Filter’s performance in TFLOPS/node.

1 4 9 16 25 36 49 64 81 100 121 144
Number of nodes

10

15

20

25

30

35

40

45

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

1MPI x 4GPUs
2MPI x 2GPUs
4MPI x 1GPU

Comparison of time-to-solution of ChASE.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Eigen-type tests

Analyze the numerical robustness of ChASE-GPU implementation

Test suite
Size of test matrices fixed to 20k × 20k
Number of eigenvalues is nev = 1500 and additional vectors of search space
nex = 500
20 runs

Testing environment
Single JURECA DC node
ChASE-CPU is fixed to 16 MPI rank per node and 8 OpenMP threads per rank
ChASE-GPU is fixed to 1MPI×4GPUs configuration and 32 OpenMP threads

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Eigen-type tests - timing analysis

Up: ChASE-CPU, Down: ChASE-GPU.

Matrix Iter. Matvecs
Runtime (seconds)

All Lanczos Filter QR RR Resid
1-2-1 13 466614 272.28± 5.28 4.64± 0.19 176.46± 4.60 31.69± 1.27 37.45± 1.64 20.99± 0.67
Geo 8 285192 165.39± 1.86 4.76± 0.28 108.02± 1.75 19.19± 0.59 20.64± 1.22 12.14± 0.54
Uni 5 163562 101.27± 1.98 4.76± 0.24 62.17± 1.47 12.05± 0.53 13.91± 0.98 7.97± 0.60
Wilk 9 248946 155.44± 2.64 4.86± 0.96 95.68± 1.77 21.53± 0.88 20.62± 1.25 12.09± 0.47

Matrix Iter. Matvecs
Runtime (seconds)

All Lanczos Filter QR RR Resid
1-2-1 13 466614 31.39± 0.09 0.58± 0.01 14.38± 0.02 2.59± 0.01 8.41± 0.09 5.24± 0.04
Geo 8 285192 18.57± 0.05 0.58± 0.01 8.76± 0.02 1.58± 0.01 4.58± 0.04 2.96± 0.02
Uni 5 163562 11.79± 0.03 0.58± 0.01 5.06± 0.00 1.00± 0.00 3.11± 0.04 1.96± 0.02
Wilk 8 246924 17.22± 0.05 0.57± 0.00 7.63± 0.02 1.59± 0.00 4.45± 0.04 2.90± 0.02

Speedup: All 8.9×, Filter 12.7×

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Strong scaling

1 4 9 16 25 36 49 64
Number of nodes

0

1000

2000

3000

4000

5000

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

Filter[sec]
Lanczos[sec]
QR[sec]
RR[sec]
Resid[sec]

ChASE-CPU

1 4 9 16 25 36 49 64
Number of nodes

0

50

100

150

200

250

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

Filter[sec]
Lanczos[sec]
QR[sec]
RR[sec]
Resid[sec]

ChASE-GPU

Uniform matrix, n = 130000, nev= 1000, and nex= 300. Data are obtained as the
averages of 15 repetitions.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Strong scaling - speedup

1 4 9 16 25 36 49 64
Number of nodes

8

10

12

14

16

18

20

Sp
ee

du
p

19.16

14.6

13.25

12.58

11.14

9.42
9.08

8.61

Speedup: ChASE-GPU vs ChASE-CPU

Speedup of ChASE-GPU over ChASE-CPU. 15 repetitions

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Weak scaling

Simulate the performance on the increasing problem size

Test configuration
Test matrices of type Uniform

n = 30k, 60k , 90k, . . . , 360k
nev and nex fixed to 2250 and 750
Number of computes nodes as square numbers 1, 4, 9, . . . , 144
The load per MPI process is constant (≈ 30k)

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Weak scaling - time analysis

1 4 9 16 25 36 49 64 81 100 121 144
Number of nodes

0

100

200

300

400

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

Filter[sec]
Lanczos[sec]
QR[sec]
RR[sec]
Resid[sec]

ChASE-CPU

1 4 9 16 25 36 49 64 81 100 121 144
Number of nodes

0

5

10

15

20

25

30

35

40

Ti
m

e
to

 s
ol

ut
io

ns
 (s

)

Filter[sec]
Lanczos[sec]
QR[sec]
RR[sec]
Resid[sec]

ChASE-GPU

Uniform matrix, n ranging from 30k to 360k, nev= 2250, nex= 750). Data are obtained
as the averages of 15 repetitions.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Weak scaling - parallel efficiency

14 9 16 25 36 49 64 81 100 121 144
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
ci

en
cy

1.0

0.85

0.79
0.77

0.73
0.69 0.7 0.69

0.67
0.65

0.64
0.63

1.0

0.58

0.42

0.3

0.19
0.18

0.15
0.14

0.1 0.11
0.08

0.07

1.0

0.68

0.58

0.53

0.49
0.47

0.43
0.43

0.41 0.43
0.43

0.42

1.0

0.42

0.45

0.57

0.53

0.35

0.31

0.24
0.21

0.16
0.13

0.12
Filter (CPU)
Resid (CPU)

Filter (GPU)
Resid (GPU)

Parallel efficiency of Filter and Resid. 15 repetitions

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Comparison with other libraries

Only ELPA2 library provides distributed GPU eigensolvers
Strong scaling tests on up to 64 nodes comparing ChASE-GPU with ELPA2 with
GPU support

ELPA configuration

Multi-Process Service (MPS) activated
Number of MPI ranks and GPUs per node is set to 32 and 4, respectively
Blocks size of block-cyclic distribution is fixed to 16

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Execution time

1 4 9 16 25 36 49 64

number of processes

0

20

40

60

80

100

120

Ti
m

e
to

 s
ol

ut
io

n
(s

)

ChASE-GPU
ELPA2-GPU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Speedup: ChASE-GPU over ELPA2-GPU

Strong scaling: Time-to-solution and speedup of ChASE-GPU over ELPA2 for solving 76k
In2O3 Hermitian eigenproblem with nev=800 (nex = 800). Data are obtained as the averages
of 15 repetitions.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Outline

1 Introduction

2 ChASE

3 Multi-GPU ChASE

4 Performance analysis

5 Conclusion

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Conclusion

We presented the distributed multi-GPU eigensolver (ChASE) for large-scale
symmetric/Hermitian eigenproblems
The ChASE is extended with a customized distributed multi-GPU HEMM
used in many parts of the code
The main performance gain is achieved in Filter part showing very good strong
and weak scalability
The new performance bottlenecks are now QR and Rayleigh-Ritz

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Future work

Increase the cross-platform portability of the code and performance by adding
support for novel AMD GPUs.
Introduce mixed-precision arithmetic to further decrease the computational time.
Resolve new bottlenecks of the ChASE code such as a per-MPI redundant QR
factorization of tall-and-skinny matrices by a customized distributed GPU-based
QR solver.
Continue in optimizing the ChASE code for solving very large scale eigenvalue
problems on current PETAscale and future EXAscale supercomputers.

Introduction ChASE Multi-GPU ChASE Performance analysis Conclusion

Thank you for your attention

Questions?

ChASE is available on https://github.com/ChASE-library/ChASE

https://github.com/ChASE-library/ChASE

	Introduction
	ChASE
	Multi-GPU ChASE
	Performance analysis
	Conclusion

