ChASE - A Distributed Hybrid CPU-GPU Eigensolver for Large-scale Hermitian Eigenvalue Problems

Xinzhe Wu², Davor Davidović¹, Sebastian Achilles², Edoardo Di Napoli²

¹Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia ²Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

> PASC22 Conference, 27 - 29 June 2022, Basel, Switzerland

Motivation I

- ullet The dense Hermitian eigenproblems are their core computational problem in numerous research problems ullet e.g. condensed matter physics
- Computing eigenvectors and eigenvalues for extremely large matrices is still a significant computational challenge
- There are only a few existing implementations capable of utilizing the distributed heterogeneous (GPU-based) systems
- But, up to our knowledge no library is able to successfully exploit GPUs for dense eigenproblems with size larger than 100000

The main challenges

The communication overhead and how to exploit the full potential of the heterogeneous multi-GPU based systems

Motivation I

- ullet The dense Hermitian eigenproblems are their core computational problem in numerous research problems ullet e.g. condensed matter physics
- Computing eigenvectors and eigenvalues for extremely large matrices is still a significant computational challenge
- There are only a few existing implementations capable of utilizing the distributed heterogeneous (GPU-based) systems
- But, up to our knowledge no library is able to successfully exploit GPUs for dense eigenproblems with size larger than 100000

The main challenges

The communication overhead and how to exploit the full potential of the heterogeneous multi-GPU based systems

Table of contents

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- Performance analysis
- Conclusion

Outline

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- 4 Performance analysis
- Conclusion

Conclusion

Problem formulation

Eigenvalue problem

Partial diagonalization of nev eigenpairs of standard symmetric eigenvalue problem:

$$A V = \Lambda V$$

A is a $n \times n$ symmetric/Hermitian matrix, V is a $n \times nev$ rectangular and Λ is a $nev \times nev$ diagonal matrix.

The problems we tackle

- A is symmetric or Hermitian
- Only a small fraction of extremal eigenpairs are sought-after
- Large-scale eigenproblems (O(100000))

State-of-the-art solutions

- **Direct solvers**: reduce matrix to condensed form (tridiagonal/band) and then computes eigenpairs (MRRR, D&C, QR) \rightarrow complexity $O(n^3)$
- Iterative solvers: project the eigenproblem on a smaller, gradually improved search space. Approximate eigenpairs from the search space.

Existing solutions

- Iterative methods have proved to be a better choice if only a subset of eigenpairs are required!
- Direct solvers (libraries): ScaLAPACK, EigenEXA, ELPA
- Iterative solvers: FEAST and PFEAST (for dense Hermitian problems)
- (up to our knowledge) only ELPA supports the execution on the distributed GPUs
- But there are numerous shared-memory solutions: MAGMA, cuSOLVER(-MG), etc.

Outline

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- 4 Performance analysis
- Conclusion

Conclusion

ChASE library

- ChASE is open source (BSD 2.0 licences)
- GitHub: https://github.com/ ChASE-library/ChASE
- https://doi.org/10.1145/3313828

Highlights

- Chebyshev polynomial with degree optimization to accelerate convergence
- Accurately approximates the extremal eigenvalues of dense Hermitian eigenproblems
- Particularly effective on solving a sequence of correlated eigenproblems
- Modern C++ interface: easy-to-integrate in application codes

ChASE algorithm - pseudocode

- 1: Set the initial vector of degrees $m_{1:\mathsf{nev}+\mathsf{nex}} \leftarrow deg$
- 2: Lanczos step: Compute spectral estimates μ_1 and $\mu_{\text{nev+nex}}$ for lower/upper bound of eigenspectrum and $b_{\text{sup}} > \lambda_n$
- 3: Set initial estimate vectors $\hat{\mathcal{V}}$
- 4: **while** size($\hat{Y} < \text{nev}$) **do**
- 5: Chebyshev filter: Filter a block of vectors \hat{V} with a vector of degree m
- 6: Re-orthogonalize vectors as $Q \leftarrow QR([\hat{Y} \hat{V}])$
- 7: Compute the **Rayleigh** quotient: $G = Q^*AQ$
- 8: Compute primitive **Ritz pairs**: $(\hat{V}, \hat{\Lambda})$ by solving $GZ = \Lambda Z$
- 9: Compute approximate Ritz pairs: $\hat{V} \leftarrow QZ$
- 10: Compute **residuals** of eigenpairs $Res(\hat{V}, \tilde{\Lambda})$
- Deflate and Lock the converged eigenvectors and values from $(\hat{V}, \hat{\Lambda})$
- 12: **Optimize** the vector of polynomial degrees m
- 13: end while

ChASE algorithm

- Can be cast almost entirely in terms of BLAS-3 operations → easily exploits optimized BLAS and LAPACK libraries (e.g. MKL, OpenBLAS, libFLAME)
- Existing ChASE take advantage of optimized BLAS/LAPACK libraries for QR, Rayleigh-Ritz
- Except for the most time consuming kernel Hermitian matrix-matrix multiplication used in:
 - Filter, Rayleigh-Ritz and Residual
 - Customized MPI scheme implementation

Parallel implementation

- Matrix A subdivided into 2D (square) grid of blocks, each one assigned to one MPI processes in 2D block fashion
- ullet Block of vectors \hat{V} are split in a 1D block fashion and distributed among the row communicators
- Custom HEMM implementation for a 2D grid distribution of A

$$A_{dist} = \begin{pmatrix} \frac{A_{0,0} & A_{0,1}}{A_{1,0} & A_{1,1}} \\ \hline A_{2,0} & A_{2,1} \end{pmatrix}, \ \hat{V}_{dist} = \begin{pmatrix} \frac{\hat{V}_0 & \hat{V}_1}{\hat{V}_0 & \hat{V}_1} \\ \hline \hat{V}_0 & \hat{V}_1 \end{pmatrix}, \ \hat{W}_{dist} = \begin{pmatrix} \frac{\hat{W}_0 & \hat{W}_0}{\hat{W}_1 & \hat{W}_1} \\ \hline \hat{W}_2 & \hat{W}_2 \end{pmatrix},$$

Chebyshev Filter

• In the filter the Hermitian matrix-matrix multiplication appears as a three-terms recurrence relation:

$$\hat{V}_{i+1} = \alpha_i (A - \gamma_i I_n) \hat{V}_i + \beta_i \hat{V}_{i-1}, \quad i \in [1, m),$$

$$\tag{1}$$

m is the degree of Chebyshev polynomial, $\alpha_i, \beta_i, \gamma_i$ are scalar parameters of each iteration i

Chebyshev filter

- ullet The V_i is required to be redistributed between iteration i and i+1 o additional communication and memory copy
- To avoid redistribution one can right-multiply with A^H

Outline

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- 4 Performance analysis
- Conclusion

Distributed ChASE

Current state

- ChASE only offloads the HEMM operator to GPU (single GPU per MPI rank per compute node)
- Other routies are parallelized using optimized parallel BLAS/LAPACK routines

Multi-GPU ChASE

- Use existing 2D block division and MPI 2D grid
- Per MPI rank subdivide into 2D grid of blocks and statically distributed among GPUs
- The sub-blocks of A are copied to and remain in the GPU memory until ChASE completes avoids continuous memory copies to/from the GPU memory

Distributed ChASE II

Distributed ChASE III

- Matrix A should fit in the aggregated memory of all available GPUs
- Execution between the GPUs only within the MPI rank (e.g. GPUs on the same node)
- All other linear algebra routines (except HEMM) are computed redundantly on each MPI process
 - The most time consuming kernels are offloaded to GPUs using cuBLAS and cuSolver libraries (smaller matrix multiplications, QR)

Memory requirements

Introduction

Per MPI process memory requirements

$$M_{cpu} = pq + (p+q)n_e + 2n_e n,$$

n is the rank of matrix A, $n_e = \text{nev} + \text{nex}$ is the largest dimension of the active subspace, 2D MPI grid is defined as $r \times c$, the local matrix held by each MPI rank is $p \times q$, where $p = \frac{n}{r}$ and $q = \frac{n}{c}$.

Per GPU memory requirement

$$M_{gpu} = rac{pq}{r_g c_g} + 3 \max(rac{p}{r_g}, rac{q}{c_g}) n_e + (2n + n_e) n_e,$$

multiple GPUs can bind to an MPI process as a $r_g \times c_g$ 2D grid scheme.

Outline

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- Performance analysis
- Conclusion

Test suite

Compute infrastructure

- JURECA-DC supercomputer at Jülich Supercomputing Centre,
- \bullet Node: two 64 cores AMD EPYC 7742 CPUs @ 2.25 GHz (512 GB DDR4 Memory) and four NVIDIA Tesla A100 GPUs (4 \times 40 GB high-bandwidth memory)

Test matrices

Matrix Name	Spectral Distribution
Uniform (Uni)	$\lambda_k = d_{max}(\epsilon + rac{(k-1)(1-\epsilon)}{n-1})$
Geometric (Geo)	$\lambda_k = d_{\max} e^{\frac{n-k}{n-1}}$
(1-2-1) (1-2-1)	$\lambda_k = 2 - 2\cos(\frac{\pi k}{n+1})$
Wilkinson (Wilk)	All positive, but one, roughly in pairs.

All tests are performed in double precision arithmetic.

MPI and GPU binding analysis

- Multi-GPU ChASE allows different binding of GPUs to MPI ranks
- We have tested 3 configurations (per node):
 - 1 MPI rank bounded to 4 GPUs (1MPI×4GPUs)
 - 2 MPI ranks bounded to 2 GPUs each (2MPI×2GPUs)
 - 4 MPI ranks each bounded to 1 GPU (4MPI×1GPU)
- Use-case
 - Number of compute nodes is p^2 , p = 1, ..., 12
 - Matrices of type UNIFORM
 - Matrix sizes are $3 \times 10^4 p$ (fixed computational load per node)
 - nev = 2250, nex = 750
 - 20 repetitions

MPI and GPU binding analysis II

Filter's performance in TFLOPS/node.

Comparison of time-to-solution of ChASE.

Eigen-type tests

Analyze the numerical robustness of ChASE-GPU implementation

Test suite

- Size of test matrices fixed to $20k \times 20k$
- Number of eigenvalues is nev = 1500 and additional vectors of search space nex = 500
- 20 runs

Testing environment

- Single JURECA DC node
- ChASE-CPU is fixed to 16 MPI rank per node and 8 OpenMP threads per rank
- ChASE-GPU is fixed to 1MPI×4GPUs configuration and 32 OpenMP threads

Eigen-type tests - timing analysis

Up: ChASE-CPU, Down: ChASE-GPU.

Matrix	Iter.	Matvecs	Runtime (seconds)					
			All	Lanczos	Filter	QR	RR	Resid
1-2-1	13	466614	272.28 ± 5.28	$\textbf{4.64} \pm \textbf{0.19}$	176.46 ± 4.60	31.69 ± 1.27	$\textbf{37.45} \pm \textbf{1.64}$	20.99 ± 0.67
Geo	8	285192	165.39 ± 1.86	4.76 ± 0.28	108.02 ± 1.75	19.19 ± 0.59	$\textbf{20.64} \pm \textbf{1.22}$	12.14 ± 0.54
Uni	5	163562	101.27 ± 1.98	4.76 ± 0.24	62.17 ± 1.47	12.05 ± 0.53	13.91 ± 0.98	$\textbf{7.97} \pm \textbf{0.60}$
Wilk	9	248946	155.44 ± 2.64	4.86 ± 0.96	95.68 ± 1.77	21.53 ± 0.88	20.62 ± 1.25	12.09 ± 0.47

Matrix	Iter.	Matvecs	Runtime (seconds)					
			All	Lanczos	Filter	QR	RR	Resid
1-2-1	13	466614	31.39 ± 0.09	0.58 ± 0.01	14.38 ± 0.02	2.59 ± 0.01	$\textbf{8.41} \pm \textbf{0.09}$	5.24 ± 0.04
Geo	8	285192	18.57 ± 0.05	0.58 ± 0.01	8.76 ± 0.02	1.58 ± 0.01	4.58 ± 0.04	2.96 ± 0.02
Uni	5	163562	11.79 ± 0.03	0.58 ± 0.01	5.06 ± 0.00	1.00 ± 0.00	3.11 ± 0.04	1.96 ± 0.02
Wilk	8	246924	17.22 ± 0.05	0.57 ± 0.00	7.63 ± 0.02	1.59 ± 0.00	4.45 ± 0.04	2.90 ± 0.02

Speedup: All $8.9\times$, Filter $12.7\times$

Strong scaling

Uniform matrix, n = 130000, nev= 1000, and nex= 300. Data are obtained as the averages of 15 repetitions.

Strong scaling - speedup

Speedup of ChASE-GPU over ChASE-CPU. 15 repetitions

Weak scaling

Simulate the performance on the increasing problem size

Test configuration

- Test matrices of type Uniform
- $n = 30k, 60k, 90k, \dots, 360k$
- nev and nex fixed to 2250 and 750
- Number of computes nodes as square numbers 1, 4, 9, ..., 144
- The load per MPI process is constant ($\approx 30k$)

Weak scaling - time analysis

ChASE-CPU

ChASE-GPU

Uniform matrix, n ranging from 30k to 360k, nev= 2250, nex= 750). Data are obtained as the averages of 15 repetitions.

Weak scaling - parallel efficiency

Parallel efficiency of Filter and Resid. 15 repetitions

Comparison with other libraries

- Only ELPA2 library provides distributed GPU eigensolvers
- Strong scaling tests on up to 64 nodes comparing ChASE-GPU with ELPA2 with GPU support

ELPA configuration

- Multi-Process Service (MPS) activated
- Number of MPI ranks and GPUs per node is set to 32 and 4, respectively
- Blocks size of block-cyclic distribution is fixed to 16

Execution time

Strong scaling: Time-to-solution and speedup of ChASE-GPU over ELPA2 for solving 76k In_2O_3 Hermitian eigenproblem with nev=800 (nex = 800). Data are obtained as the averages of 15 repetitions.

Outline

- Introduction
- 2 ChASE
- Multi-GPU ChASE
- 4 Performance analysis
- Conclusion

Conclusion

- We presented the distributed multi-GPU eigensolver (ChASE) for large-scale symmetric/Hermitian eigenproblems
- The ChASE is extended with a customized distributed multi-GPU HEMM used in many parts of the code
- The main performance gain is achieved in Filter part showing very good strong and weak scalability
- The new performance bottlenecks are now QR and Rayleigh-Ritz

Future work

- Increase the cross-platform portability of the code and performance by adding support for novel AMD GPUs.
- Introduce mixed-precision arithmetic to further decrease the computational time.
- Resolve new bottlenecks of the ChASE code such as a per-MPI redundant QR factorization of tall-and-skinny matrices by a customized distributed GPU-based QR solver.
- Continue in optimizing the ChASE code for solving very large scale eigenvalue problems on current PETAscale and future EXAscale supercomputers.

Thank you for your attention

Questions?

ChASE is available on https://github.com/ChASE-library/ChASE

