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ABSTRACT

The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are
modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The
polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal
basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts
the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent
in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode,
with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius
of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian
polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0120493

I. INTRODUCTION

Polymeric and filamentous structures are an integral part of liv-
ing matter as they are fundamental for diverse molecular processes
and the perpetuation of its out-of-equilibrium state.'” Fueled by
Adenosine Triphosphate (ATP), molecular machines, such as motor
proteins and ribosomes,* imply an enhanced diffusional motion of
biological macromolecular structures.”'® In vivo, kinesin motors
couple microtubular filaments and generate forces, which affect the
dynamics of the cytoskeleton network, the transport processes in the
cell plasma, and the organization of the cell interior.” """ Similarly,
nuclear ATPases such as DNA and RNA polymerases cause nonther-
mal fluctuations,”’ ** contribute to chromatin motion,"**"** and are
involved in the spatial segregation of the eukaryotic genome.”

In vitro, motility assays are a paradigm of active systems.
Here, actin or microtubule filaments are translocated by molecular
motors whose tails are anchored on a planar substrate.”’  Experi-
ments reveal microtubular structures such as rotating rings in dilute
systems or persistently moving large-scale swirls and bands at

3,

N

high filament densities.”" " Likewise, in mixtures of micro-

tubules, kinesin motors, and a depletion agent, bundles emerge,
which translocate due to the kinesin motors walking along the
filaments.””* At high enough concentration, the microtubules form
a percolating active network characterized by internally driven
chaotic flows, hydrodynamic instabilities, enhanced transport, and
fluid mixing,”" **

Aside from the study of biological filamentous structures,
diverse concepts are applied to obtain synthetic active colloidal
polymers.”** " Here, propulsion is typically achieved by phoretic
effects, based on local gradients such as electric fields (elec-
trophoresis), concentration (diffusiophoresis), and temperature
('[hermophoresis).35 ot

Various models have been proposed to elucidate the confor-
mational and dynamical properties of active polymers and filaments
and, most of the time, have been employed in computer sim-
ulations. Particular interesting aspects are the coupling between
the polymer conformations, their (internal) dynamics, and the
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nonequilibrium active forces. Linear polymers comprised of active
Brownian particles (ABPOs)’ exhibit an activity-induced polymer
collapse, typically in two dimensions,”” ** or swelling,”*>*"’* and
a polymer-length-dependent suppression of phase separation.”””°
In contrast to passive polymers, hydrodynamic interactions affect
the polymer conformations, with a shrinkage for moderate and
a reduced swelling for large activities.””” The polymer dynamics
is enhanced and new intramolecular time regimes appear.””’
Motor-driven filaments are typically modeled by a tangential active
force.”””" In this case, too, computer simulations reveal strong
conformational changes, typically polymer shrinkage at very high
activities, and an enhanced center-of-mass (CM) dynamics, with a
ballistic regime for short times and an activity-amplified long-time
diffusive regime for isolated filaments.””**** Analytical calculations
of semiflexible active polar ring polymers (APRPs) predict a tank-
treading-like active motion along the polymer contour,” with the
ring rotation, in agreement with experiments.”"" Aside from these
rather generic approaches, particular realizations of the active envi-
ronment are considered, such as active dipoles in the modeling of
coherent chromatin motion.”

Computer simulations provide deep and valuable insight into
the properties of individual active polymers and their collective
behavior. Yet, for a detailed understanding of dynamical aspects, a
theoretical model and analytical predictions are desirable. Specifi-
cally, for tangentially driven active polar linear polymers (APLPs),
an elaborate model is lacking, nonetheless basic considerations have
been presented.”

In this article, we describe consistent discrete and continu-
ous theoretical approaches to characterize the properties of flexible
APLPs. The discrete polymer is comprised of beads connected by
bonds, with active forces along the bond vectors. In the contin-
uum limit, these forces act along the local tangent of the poly-
mer contour. The polar interactions break the polymer end-to-end
symmetry, which results in non-symmetric/non-Hermitian eigen-
value problems for the linear equations of motion (EOM), which
are solved by expansions into biorthogonal basis sets. In con-
trast to equivalent passive polymers,’’ the discrete model yields
complex eigenvalues for activities exceeding a critical value. This
results in a single activity-independent relaxation time and a par-
ticular dynamics determined by a superposition of time-dependent
trigonometric functions with mode-dependent frequencies. The
biorthogonal basis leads to a coupling of modes in the mode-
amplitude correlation functions with an emerging maximum at
a mode, which shifts to a higher mode number for increasing
activity, whereas passive flexible polymers show an exponential
decay and decoupled modes.””” As a consequence, an increas-
ing number of modes is required to ensure convergence of sums
over modes in a continuous polymer description. Our approach
yields polymer conformational properties, e.g., the mean-square
end-to-end distance, which are unaffected by the tangential propul-
sion. In contrast, the dynamics is strongly activity dependent. The
center-of-mass and bead mean-square displacements (MSDs) show
a ballistic regime for short times and an activity-enhanced dif-
fusive overall polymer motion for long times. The total polymer
mean-square-displacement is dominated by its internal dynamics,
in contrast to active Brownian polymers at very higher activi-
ties, where the center-of-mass motion prevails.”> The long-time
diffusion coefficient increases linearly with increasing propulsion
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strength, in agreement with simulation results,”” while for active
Brownian polymers, it increases quadratically with activity. Fur-
thermore, the end-to-end vector correlation function is dominated
by the first relaxation time for long times, whereas multiple relax-
ation times contribute at short times resulting in a complex time
dependence.

Il. DISCRETE MODEL—ACTIVE POLAR LINEAR
BEAD-SPRING POLYMER

A. Equations of motion

A flexible discrete linear polymer is composed of N +1
beads connected by harmonic bonds. Their positions r;(t)
(j=0,...,N) evolve in time ¢ (Fig. 1).”’ An active force f,R;(t)
is applied along the bond vector R;(t) = [rj(t) — rj—1(t)] of force
density f, per bond length I Then, the total active force on
bead j is Fj () = fu[Ri1 (1) + Ri(1)]/2 = fulrj1 (1) = 1 (9)]/2.77
The beads’ overdamped equations of motion (EOMs) are
(j=1,...,N-1)

i’%rj(f) = %[Rjﬂ(f) +Ri(D]+Ii(t) + 3klil;‘TU;lj“(t) ~RO)
2
a0 (55 oo, o

with the bond force Fjb(t) = 3kpT[Rjs1(t) — R(t)]/P and the
stochastic force Ij(t). The strength of the bond force, 3ksT/P,
ensures that the local constraint (R]2 ) = P is satisfied for all activities,
which accounts for the inextensibility of a polymer in a mean-field
manner,”””" where T is the temperature, kp is the Boltzmann con-
stant, and L = Nlis the polymer contour length. In the matrix formu-

lation of the EOMs, the polar active forces lead to a non-symmetric

FIG. 1. lllustration of an active polar linear polymer. The black line indicates a
continuous polymer, the blue beads the discrete one, and the green arrows the
active forces along the bonds, which are tangential to the polymer in the continuum
limit. Arbitrary position vectors r;(t) and r(s,t) and the end-to-end vector re(t)
are shown, and the bond length / is indicated.
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matrix M [see Egs. (S1) and (S2) of the supplementary material].
The thermal fluctuations I'j(t) are described as a stationary Gaussian
and Markovian stochastic process with zero mean and the second
moments,”””

(Taj(£)Tpi(t')) = 27kpTSap0ud(t — t'), (4)

with the translational friction coefficient y and the Euclidean coor-
dinates a, 8 € {,y,z}. To characterize activity, the Péclet number

L
Pe = 'ZBT (5)

is introduced, which is the ratio between the total active energy of a
polymer of length L and the thermal energy.””"’

B. Solution of the equations of motion

The solution of the non-symmetric (non-Hermitian) equations
of motion (1)-(3) is obtained by the eigenvector expansion,

N _ N .
() = S im(OB, (1) = 3 Fu(1)BS, (6)
m=0 m=0
with the eigenvectors by, = (bf,? ), .. ,ban))T of the non-symmetric

matrix M [Eq. (S2)]. A biorthogonal basis set is formed together
with the adjoint eigenvectors b}, = (bf,? AN ban)T)T of the
transposed matrix M. The eigenvectors are normalized such that
b}, - b, = 8,n.” Explicitly, the eigenvectors are given by

b =] 2 e’
NHL (1= r2)sin? ko + (rg — Amf2)?

x [\ /1-12 sinky cos (kmj) + (rqg = Am/2) sin (i{m])],

b =N, me N, (®)
: inh(d)
b _ sin ) 9
0 \‘ edN sinh(d(N + 1)) ©)

=In(\/1+r4/\/1-14), ra<l, (10)
d:ln(\/1+rd/\/rd—l)—ig, s, (11)

with the wave numbers k,, = mm/(N + 1), the abbreviation

Pe

N (12)

Tag =

and the eigenvalues

: N 2N*y - .
Em = TIZ%R/\m = oh. [1 —\/1-ricos km], & =0, (13)

in terms of the relaxation time 7z = )/L2 /(37%kpT) of a flexible pas-
sive polymer.”’"”” The eigenvalues &, can be complex for ry > 1

ARTICLE scitation.org/journalljcp

however, only conjugate complex pairs, & =&t appear in the
eigenvector expansion, which implies real position vectors r;(t) and
random forces I'j(t) (Sec. S-II of the supplementary material).

Insertion of the expansion (6) into the EOMs (1)-(3) yields the
equations for the mode amplitudes

yhn(8) = ~Enion(1) + (1), 19

In the stationary state, their solutions are

P Eop o
im(t) = ie‘fm‘/yf IE, ()t (15)
y —oo

o(t) = 70(0) + %/O-tfo(t')dt'. (16)

Aslongas 7, < 1,&, € Rand Eq. (14) describes relaxation processes
with the relaxation times

n TR

ry_T
ém 2N2(1—\/1—r§cosl~<m)

In the case of ry > 1, the Em are complex with the single mode-
independent relaxation time 7 and mode-dependent frequencies wy,
which, via &, = & + iEl, = /7 — ijwm, are given by

(17)

w 2N? 1

T= TR Wm = ——
2N2

=\/r5— 1cos . (18)
7 TR
For N even, there is one real eigenvalue, 20 = 0, whereas for N odd,
the additional real eigenvalue & (N+1)/2 = P/ is present.

The consequences of the spectrum of complex eigenvalues on
the APLP dynamics cannot as straightforwardly be interpreted as
that for real eigenvalues only since the solution of the equations of
motion is a superposition of many eigenfunctions.

lll. CONTINUOUS MODEL—TANGENTIALLY
PROPELLED POLAR LINEAR POLYMER
A. Equation of motion

In the continuum limit of a flexible linear polymer,‘”‘()‘w’m the
equation of motion of the APLP is

yat r(s,t) f,Z r(s, ) + 3pk3T o r(s,t) +I(s,t)  (19)

for pL > 1, where p is related to the polymer persistence length I,
viap = 1/(21,).”""*" Here, s is the contour variable (s € [0,L]), y is
the friction coefficient per length, and I'(s, t) is a stationary, Gaus-
sian, and Markovian stochastic process of zero mean and the second
moments’!

(F(s, t)-I(s, t')) = 6ykpTO(s — s )8(t - t'). (20)

Equation (19) has to be solved with the free-end boundary
conditions Or(s,t)/0s = 0ats =0, L.
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As for the discrete polymer, the strength of the bond force
3pk,T ensures that the global mean-field constraint

L

of polymer inextensibility is satisfied.

B. Solution of the EOM—Eigenfunction expansion

The solution of the non-Hermitian equation (19) is obtained by
the eigenfunction expansion

r(st) = i;oxmmqu(s), I(s1) = i;ormowm(s), (22)

in terms of a biorthogonal basis {gbm,gbL; m € Ny}, following as
solution of the two eigenvalue equations

82
( a— + 3pkBT6 5 )¢m = _fmﬁbrm (23)

( fﬁ +3pksT o5 )¢>m = ~Engh, (24)
The eigenfunctions are normalized such that

L
[ 8 (5)9n(5)ds = b 25)

The free-end boundary conditions for r(s, t) lead to the conditions

[§¢(>] -0, (26)

d
-2 b0+ b0 =0 @)

for the eigenfunctions. Note the distinct boundary conditions for the
adjoint eigenfunction. Here, the abbreviation

Pe
6mpL

(28)

re=

is introduced. Explicitly, the eigenfunctions and adjoint ones are
obtained as (m > 1)

2 e—nrfs/L
bm(s) = [m cos(kms) + rc sin(kms)], (29)
\/_
Ph(s) = " m(s), meNo, (30)
¢o = o 31)

Le™: sinh(7r.)’

with the wave numbers k, = mm/L. The real eigenvalues are
given by

m = l(m2+rf), (32)
TR

with the relaxation time 7 = yL*/(37°pk,T) of a flexible passive
polymer.”’ The exponential decay along the polymer contour in
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Eq. (29) unveils the head-tail symmetry breaking due to the polarity
of the driving force.

The equations for the mode amplitudes yx, (t) and their
solutions exhibit the same structure as in the discrete model,
Eqgs. (14)-(16), but with the distinct relaxation times,

TR

Yo 33
En mE4r? (33)

T =

In the following, results of the continuous with those of the dis-
crete polymer model are compared, where the continuous descrip-
tion corresponds to the discrete one for pL =N > 1, p =1/I, and

y=7/L

IV. CONFORMATIONAL PROPERTIES

The conformational properties of the polymers are determined
by the relaxation times and the mode amplitudes.

A. Eigenvalue spectrum

Figure 2 illustrates the dependence of the eigenvalues of the dis-
crete polymer model [Eq. (13)] on the Péclet number for various
modes. In the interval 0 < Pe/(6N?) < 1, the eigenvalues &, are real,
determining relaxation times 7,,, and they increase/decrease with
increasing Pe. For Pe/(6N*) > 1, the complex eigenvalues are given
by the real part & = j/7 [Eq. (18)], with the mode-independent
relaxation time 7, and the imaginary part &, = —jw,,, with the
frequencies w,, [Eq. (18)]. These frequencies increase for modes
m < (N +1)/2 and decrease for m > (N + 1)/2 with increasing Pe.
As long as ky = mn/(N+1) < 1 and Pe/(6N?) < 1, the eigen-
values of the discrete and continuous polymer model agree with
each other, as reflected by the modes m =1 and m = 100 in Fig. 2.
For large m and Pe/(6N?), the eigenvalue spectra differ due to
discretization effects.

4 T T T T T T 4

3F 2
& =
I Q
~C > j
D2 Prag 0«
o e o
ez [____—=-" - T
wo - ’,,’ . w

1 = == - e -2

| | | | | |
0 4
0 0.5 1 15 2
Pe/(6N?)

FIG. 2. Normalized eigenvalues &, as a function of the scaled activity Pe/(6N?)
for the modes m € {1, 100, 150, 190, 225, 275, 310, 350, 400, 500} (bottom to top)
of a discrete polymer model of length L// = N = 500. The left axis corresponds to
the real part (blue) and the right axis to the imaginary part (red) of the eigenvalues
(13). The black dashed lines indicate the eigenvalues &, [Eq. (32)] of the con-
tinuous polymer model for the modes m € {1,100, 150,190} (bottom to top) and
pL = N.
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The fundamental differences in the eigenvalue spectra for
Pe/(6N?) > 1 reflect the distinctiveness of a discrete and a contin-
uous polymer model. The difference equations for the eigenvalues
and eigenvectors of the discrete model provide other solutions than
the eigenvalue equations of the continuum approach since the latter
requires a smooth and infinitesimal change of the eigenfunctions as
the contour variable s varies, whereas the difference equations allow
only for finite discrete changes.

B. Relaxation times

The relaxation times 7,, = 9/ &,, of discrete APLPs are presented
and compared with those of continuous APLPs in Fig. 3. In a passive
polymer, #,,/Tg ~ Tm/Tr ~ 1/m® form > 1and ma/(N + 1) < 1,i.e.,
the relaxation times decrease quadratically with increasing mode
number.”” This is no longer the case for Pe > 1, where the relax-
ation times assume a progressively extended plateau at small m > 1
with increasing Pe, as is apparent from Eq. (33).

As long as the polymers are sufficiently long such that
Pe/(6N?) 5 0.1, the relaxation times of the discrete model closely
agree with those of the continuous polymer model, except of
the expected discretization discrepancies for large mode numbers.
Deviations at small m appear for Pe/(6N?) > 0.4 and are most
pronounced for Pe/(6N*) > 1, where there is only one mode-
independent relaxation time 7 = yI*/(6kpT) for the discrete polymer
model (Fig. 3). In contrast, the relaxation times of the contin-
uous polymer model 7, [Eq. (33)] are proportional to Pe™* for
Pe/(6mpL) > m and decrease with increasing Péclet number.

C. Correlation functions of mode amplitudes

For the discrete polymer model, the stationary-state time cor-
relation functions of the mode amplitudes, obtained from Egs. (15)
and (16), are (m,n > 1)

+ o+

. . 6kgT  _E 1+—i1/5
Gon () (0) = g =g e R0l o
m n
: l T T llllll T T T IIIII T T T lllll:
- Ty — N =1000
4 +y =

10 :E +“**+, N =500 ?g

- N=300 ]
103_5 N=200 -

F N=100 3

MRS T

L S S

7~'m/%l 5 Tm/Tl
—
<

T llnm'l

101_5
IOOE 1 1 1 L1l III m .
100 10! 102 10°
m,

FIG. 3. Normalized relaxation times of the discrete, 7/7 (crosses), and the con-
tinuous polymer model, 7m/7; (dots), as a function of the mode number m for the
Péclet number Pe = 10° and various number of beads as indicated in the legend.
The normalization factor is 7; = 712/ (3n%ksT) = 7r/N?, also for the continuous
polymer with pL = N. The black line indicates the quadratic power law decay.
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where & = &, for t > ' and &, = &, for ¢ < ¢'. Correlation functions
comprising the mode m = 0 are given by

. “E, (=) ]y ’
. Lo 6kg Tt e , t>t,
(Am(t) Ko(t)) = 73?1 bin-bg{ , (35

> <t,

6kpT

(xo(t)~xo(t'))=Tbg-bg ' +%00), t>t'>0.  (36)

For the continuous polymer model, the stationary-state time
correlation functions of the mode amplitudes are (m,n > 1)

6kgT
&+ &

Spatial integration yields
K (8) - X, (£)
B 8r.L* mn(=1+ (=1)""e¥™)
W PL [(m - n)? + 4r2][(m + n)? + 42]\/m? + r2\/n? + 12

x e_|t_t(|/Tm) (38)

() - X, () = s [ L)) ds (37)

X (D) - 20 (1))
_ 47’5L3 2nr. m(71 + (71)”1837"”)
N mdem/2pL \| sinh(nr;) (m? + r2)32(m? + 9r2)

e—(t—t')/rm, £t
x , (39)
1, t<t,

3kgT 4. sinh(27r;) ,
e — t, t
y sinh(7r.)

(o (1) - xo(t)) = x5(0) +
(40)

with the abbreviation r. = Pe/(6mpL) [Eq. (28)]. At equal-times,
t=t',and for m = n > 1, the mean-square mode amplitudes are

L’ m?

27T,
LN 41
2m3repL (m? +r§)2( ) (1)

06)
The mode-amplitude correlation functions reduce to those of a pas-
sive system in the limit of Pe = 0.°! In strong contrast to the passive
case, the non-Hermitian nature of the equations of motion of the
APLPs implies a coupling of the mode amplitudes for Pe > 0. Not
only couple the modes with m # n, m, n > 1, but also the mode m = 0,
which describes the center-of-mass translation motion in case of a
passive polymer. Such a coupling of modes was assumed in Ref. 97
to describe the broken detailed balance in the internal dynamics of
semiflexible polar filaments.
Figure 4 depicts mean-square mode amplitudes for discrete
and continuous APLPs [Eqs. (34) and (41)]. In the limit of Pe — 0
(bottom curve), the well-known dependence (x7,) ~ 1/m” of passive
flexible polymers is obtained,”’”” with discretization differences at
large m. With increasing Pe, gradually a maximum appears, xfna),
which shifts to larger m with increasing Pe. The relaxation times in
the vicinity of the maximum, corresponding to the mode number
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FIG. 4. Normalized stationary-state mean-square mode amplitudes (2 for dis-
crete (squares) and (xfn) for continuous (lines) APLPs as a function of the mode
number m for various Péclet numbers Pe as indicated in the legend (increasing
from bottom to top) and N = pL = 500. (%) and (2) are the mean-square mode
amplitudes for the mode m = 1, respectively. The black lines indicate quadratically
increasing and decreasing power laws.

m, = Integer[Pe/(67pL)], determine the APLP dynamics because
they yield the largest contribution in the sum over modes in terms of
the correlation functions. Below the maximum value m,, the mean-
square mode amplitudes increase as (§,) ~ (x_,) ~ m" for m < my,
and for m > mg, they decrease as (¥} ~ (x,) ~ m . The full depen-
dence of (x,,() - x,(t)) on the mode numbers m and » is shown
in Fig. 5. The values of the correlations are arranged on two “bell-
shaped” surfaces, corresponding to even and odd mode numbers.
This demonstrates the strong coupling between the modes and, most
importantly, the presence of negative correlations.

(Xm(t) - X () / (X,

FIG. 5. Normalized stationary-state mode-amplitude correlations (y,, (t) - x,(t))
of a continuous APLP as a function of the mode numbers m and n for
Pe = 1.9 x 10° and pL = 500. The normalization factor (xﬁla) is the maximum

of (x2) determined by the mode m, = 20. The correlations (x,,(t) - x,(t)) are
arranged on two “bell-shaped” surfaces, with positive (blue) and negative (red)
values, respectively.
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The non-Hermitian nature of the equations of motion of the
APLPs leads to a tight coupling of the various modes, implying
substantial deviations to the mode correlation functions of passive
polymers.””* Specifically, the maximum at m, for Pe/(67pL) > 1
implies that the relaxation behavior of macroscopic quantities is typ-
ically no longer determined by the largest relaxation time but rather
by 7 in the vicinity of m ~ m,. Moreover, the presence of nega-
tive values of the correlations (y,,(¢) - x,(f)) causes cancellation
of positive contributions in sums over modes and, hence, requires
summation over many modes to achieve convergence, in particular,
for continuous APLPs. On the contrary, the number of modes of
discrete APLPs is limited by the number of beads.

D. Mean-square end-to-end distance, radius
of gyration

With the expansions Eqs. (6) and (22) for the discrete and
continuous APLPs, respectively, the numerical evaluation of the
mean-square end-to-end distances yields

(72) = ((Fn (D)~ Fo(1)?) = NP, (42)
(r2) = ((r(L, 1) - r(0,))") = I% (43)

over the considered range of Péclet numbers, 0 < Pe < 10%, vari-
ous N, and even in the case of complex eigenvalues [Pe/(6N*)
> 1]—identical to those of passive polymers. The double sums
over modes have to be performed numerically, and for the con-
tinuous polymer, a sufficiently large number of modes has to be
taken into account to achieve convergence (Sec. S-III of the sup-
plementary material). Similarly, the radii of gyration, (r;) = (rg)/G,
are identical with those of passive polymers, and even the mean-
square bond lengths satisfy the constraints (R}) = I* for all Péclet
numbers. Moreover, subsequent bond vectors are independent, i.e.,
(Rix1 - Ri) =0, as applies for flexible phantom polymers.”” Hence,
within the adopted models, the polymer conformational properties
of tangentially driven linear polymers are independent of propul-
sion.” This is in contrast to computer simulations of polar polymers,
which predict polymer shrinkage, however, applying a different
bond potential,”*"** a different tangential active force,*” as well as
excluded-volume interactions.

The simulations of Ref. 82 predict a shrinkage of a discrete
phantom polymer for Pe/N? % 20—note the different description of
the active tangential force in Ref. 82—and thus, a deviation from the
linear N dependence in Eq. (42) occurs. Although, this differs from
the predictions of the present Gaussian flexible APLP model, these
simulation results of the dynamics can be compared to the analyt-
ical ones as long as Pe/N* 20, which for a polymer with N = 500
beads corresponds to Pe <5 x 10°. As will be shown in Sec. V,
the APLP dynamics exhibits generic activity effects for such Péclet
numbers.

V. DYNAMICAL PROPERTIES

The translational motion of polymers is characterized by the
total mean-square displacement (MSD), averaged over the polymer
contour, which for a continuous polymer is
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() = 1 [N(ren -rs0) )l

and comprises contributions from the center-of-mass motion,
(ArZ, (1)), and the internal dynamics in center-of-mass reference
frame, (Ar?(t)), such that

(Arpe (1)) = (Ard, (0) + (AP (1)), (45)

Analogous definitions apply for the discrete polymer model.

Primarily, analytical results for continuous flexible APLPs
are presented because appearing integrals and sums can often
be evaluated and approximated analytically, whereas the sums in
case of discrete APLPs cannot. However, numerically, the dis-
crete APLPs can be treated more rigorously than the continu-
ous APLPs because the latter require summation over a huge
number of modes to achieve convergence, especially at large
Péclet numbers.

ARTICLE scitation.org/journalljcp

A. Center-of-mass mean-square displacement

The calculation of the center-of-mass mean-square displace-
ment (CM-MSD)

{Ar2 (1)) = ((ren (1) = rem(0))), (46)

with e (2) = fOL r(s,t)ds/L and Fem(t) = Zjl\io rj(t)/(N + 1), respe-
ctively, for discrete and continuous APLPs yields

B Llfcoth(d(N+ 1))t .
coth(d) R

1szTi b}, - b}
N+1

m=1 Em

(A7, (1))

2

(Argm(t)) = 6Dgnre coth(mre) t + =

s . N Tt
1) 12T S Bt
(N + 1)2 myn=1 gm + fn
N . . P
% Z b,(ﬂl)bs,])(l _ e—fmf/)’ )’ (47)
ij=0
|
32r L m (1= (=1)"e ™) (-1 + (-1)"e™) (1 B e—t/‘r,,,)
e sinh(nro)p A2 (m? +12)3(m? +912)
1287°L & m2n2(1 - (—l)me_””)(l - (—1)"e_"")(—1 + (—1)m+"e2””) (1 - e—t/rm) )
[(m—n)?+4r2][(m+n)? + 4r2](m? + r2)2(n2 + r2)? ’

5
U p m,n=1

with the abbreviation d of Sec. II B, r. of Eq. (28), and the dif-
fusion coefficient Dg = kgT/(yL) of a continuous passive flexible
polymer.”"”* Evidently, the non-Hermitian nature of the equations
of motion implies a coupling of the translational mode (m =0)
with higher modes (m > 1) as well as a coupling between higher
modes (m,n > 1). Thus, the CM-MSDs Egs. (47) and (48) differ
distinctively from those of passive’” and active Brownian poly-
mers,” where the CM-MSD is solely determined by the translational
mode.

Figure 6 displays the CM-MSD of discrete APLPs and the
comparison with the analytical results of the continuous model for
various Péclet numbers. Evidently, the two representations yield the
same results, and discretization effects are of minor importance for
this polymer length. In the limit Pe — 0, the diffusive behavior of
the passive flexible polymer is found.”"*” Clearly, three-time regimes
can be identified for Pe > 1. Taylor expansion of Eq. (48) for short
times t/7r << 1 and Pe > 0 yields (Sec. S-IV A of the supplementary
material)

(Ark. (1)) 2t Pé? ( t )2, (49)

N — | —
(r?) m 1R In*(pL)? \ 1R

with the diffusive regime of a passive polymer for t/tp < 187
(pL)?/Pe* and an active ballistic regime for ¢/7x > 187*(pL)*/Pé*
and Pe > 1. Both terms in Eq. (49) are determined by the internal
polymer dynamics with all modes contributing. In particular,
the term linear in t in Eq. (48) is canceled by a similar
term resulting from the sums in Eq. (48) (Sec. S-IV A of the
supplementary material). For t/tr > 37°pL/Pe, the exponential

terms, et ™, in Eq. (48) are negligible, and the time dependence
of the CM-MSD is entirely determined by the linear term, i.e., the
APLPs exhibit diffusive motion with the activity-enhanced diffusion
coefficient

Pe=10°
Pe =3 x 107

Pe =107
Pe =3 x10°
Pe =10°
Pe=3x10°
Pe=10°
Pe=3x10*
Pe = 10"

1072 10° 102
t/TR

FIG. 6. Normalized center-of-mass mean-square displacements (472, (t)) as a
function of the time t/zg for discrete APLPs of length L// = N = 500 and vari-
ous Péclet numbers Pe as indicated in the legend. The blue curve for Pe =1
represents the CM-MSD of a passive polymer. The black dashed lines show
the approximations of the short time ballistic regime [Eq. (49)] and the long-time
activity-enhanced diffusion [Eq. (50)] for continuous APLPs. The black solid lines
indicate power laws.
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1( Pe )

1+ - — Pe <1

D P P 4 ’
De L (TEL) pe VP (50)

R P P —e, Pe>1,

6pL

where Dg =kgT/(yL)."® Note that the diffusion coefficient
[Eq. (50)] follows from the correlation function of Eq. (40) for the

mode m = 0 and, hence, is determined by the thermal fluctuations.
Similarly, the calculations for the discrete polymer model yield

N coth(d(N +1)) Pe

> N2 1’
coth(d) 6N?
D | Ntanh(d(N+1))  Pe
DiT| @ 0 oewr NG
Neoth(dN+1)) — Pe | o
tanh(d) TN ’

with d = In(~/Pe + 6N2/\/Pe — 6N2). For the discrete APLP model,
there is a pronounced odd-even effect in terms of the bond num-
ber N as long as Pe/(6N*)>1 and d(N+1) < 1. In the case
Pe/(6N?) > 1, Taylor expansion yields

D N(N+1), N even,
2
LA (52)
—————,  Nodd
36N3(N + 1)

Hence, for N even, the long-time diffusion coefficient is indepen-
dent of activity, whereas for N odd, D shows a strong dependence
on Pe. This is confirmed by numerical evaluation of Eq. (S40) of the
supplementary material. The manifestation of the odd-even differ-
ence requires large activities Pe/ (6N°) > 1, with the diffusion coef-
ficient for odd N strongly exceeding that for even N. We attribute
this difference to a (partial) cancellation of active forces in case of
an even number of bonds, whereas such a cancellation is not pos-
sible for an odd number. Figure S1 of the supplementary material
provides an example for the CM-MSD of polymers of length
L/1=N =50 and N = 51. It illustrates the odd-even effect on the
long-time diffusive motion as well as the emergence of oscillations
on shorter time scales (see also movies M1-N50, M2-N51, and
M2-N50-cm). The oscillations are a consequence of the propulsive
motion of the APLPs, which resembles to some extent the tank-
treading motion of APRPs.” At very large Péclet numbers, this
occurs because the active motion along the polymer contour is faster
than the relaxation of the polymer conformation. Without the long-
time diffusive contribution to the MSD [first term on the right-hand
side of Eq. (47)], the polymer center-of-mass is “confined” in a
sphere of radius ((ré))l/ 2, which it traverses very fast, approaching
repeatedly previous positions. The rapid turning is reflected in the
autocorrelation function of the polymer end-to-end vector, which
also exhibits oscillations, as illustrated in Fig. S3.

In contrast, aslongas d(N + 1) > 1, D/Dr ~ N/ tanh d is inde-
pendent of the odd-even nature of N, and D/Dg »~ Pe/(6N) for
Pe/(6N?) > 1, with a Pe and N dependence comparable to that of
Eq. (50).

The diffusion coefficient in Eq. (50) increases linearly with Pe
for Pe > 1.%° This agrees with simulations of active filaments in
two”® and three®>”® dimensions. Moreover, the long-time diffusion
coefficient D ~ DrPe/(6pL) = f./(6yp) = ful?/(67) is independent
of the polymer length and depends linearly on the activity, as

ARTICLE scitation.org/journalljcp

has also been found in Ref. 82. The linear Pe dependence of D
[Eq. (50)] for Pe >> 1 differs from that of the diffusion coefficient of
individual active Brownian particles (ABPs) and active Brownian
polymers, which exhibit a quadratic Pe dependence,””*""*"
reflecting the different underlying propulsion mechanisms
(see Sec. S-VII of the supplementary material). For discrete APLPs,
the active force on the center-of-mass is F;" = fo(rny —10) /(N + 1)
= faFe/(N + 1) and, hence, depends on the polymer conformations.
In contrast, the propulsion force in ABPs and ABPOs is related
to a solid-body rotation of an ABP and, in the case of ABPOs, is
independent of the polymer conformations.

For shorter discrete polymers, the active diffusion with the dif-
fusion coefficient in Eq. (50) and 1 « Pe <« 6N° can be considered
as motion with a constant velocity v along the contour of a flexible
polymer. This assumption implies

((ri(t) - ri(O))z) = vt (53)

||||I'I'I'|| |||||I1'|| ||||I'I'I'|| |||||I1'|| ||||I'I'I'|| T 11T

102
3100

=
~
=
=~
E q-2
=10
N O
A
=

Pe =1.96 x 10°

104 —— Pe=1.96 x 10*
—— Pe=1.96 x 10°
) / —— Pe=10"
10 LLLl Illlld ,I IIIM Illlld IIIIM LLLll
107° 1073 107! 10!
t/TH
| 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 LU i
100 (b) =
,2;10*1- ) _
S E E
~ N ]
_Q N ]
I — N=59 ]
102 |
—— N=159 3
— N =299 7
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1073 1072 1071 10° 10!
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FIG. 7. (a) Normalized polymer center-of-mass mean-square displacements as a
function of the time t/zx for discrete APLPs of length L// = N = 99 and various
Péclet numbers Pe as indicated in the legend. The blue solid line for Pe = 1 rep-
resents the CM-MSD of a passive polymer. (b) Long-time polymer center-of-mass
diffusion coefficients D normalized by DrN = kgT/7 as a function of the activity
Pe/N?. The symbols (squares) are simulation results for polymers with (a) 100
and (b) 50, 160, and 300 beads, taken from Ref. 82, and the lines are calculated
via (a) Eq. (47) and (b) Eq. (51) for the same number of beads. The black solid
lines indicate power laws for time ¢t and the Pélect number Pe, respectively.
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for any monomer, with v = f,1/7 = PeksT/(IyN*), and yields the dif-
fusion coefficient D/Dg = Pe/(6N) as in Eq. (50). This argument is
valid as long as the ratio L/l = N between the polymer length and
the persistence length [, = 1/(2p) = I/2] is not too large. It does
not apply to the adopted continuum description because in that case
pL > 1.

Figure 7 presents a comparison between simulation results
of Ref. 82 and the analytical expression of APLPs for the polymer
CM-MSD (Eq. 47) and the long-time diffusion coefficients (Eq. 51).
It is important to note that the diffusion coefficient of Eq. (50)
is almost identical with Eq. (51) of the discrete polymer over the
considered range of Péclet numbers. The theoretical results cap-
ture the active force dependence obtained in simulations very well,
both for the CM-MSD in Fig. 7(a) as well as the diffusion coef-
ficients in Fig. 7(b). In our approach, the polymer conformations
are 1ndependent of Pe, and thus, it does not show the shrmkage of
polar polymers as observed in simulations for Pe/N* > 1,°** with
a corresponding reduction in the CM-MSD and D. In general, the
theoretical curves in Fig. 7(b) are shifted toward larger Pe, and multi-
plication with a factor of ~1.5 yields better agreement, specifically for
N = 59. This quantitative difference might originate from the differ-
ent models, e.g., no self-avoidance in the presented model of APLPs,
and the different implementation of the active tangential force,
compare Egs. (1)-(3) with Eq. (6) of the supplementary material
of Ref. 82.

Despite that, the crossover time, 7, = (y/ksT)L>/Pe, from the
active ballistic to the active diffusive time regime, agrees with the
scaling relation found by the simulations of Ref. 82.

B. Mean-square displacement in the center-of-mass
reference frame

Figure 8 presents the contour-averaged mean-square dis-
placement of the beads of the discrete polymer model in the
center-of-mass reference frame,

{a# (1)) = 72 ((a#(r) - 4%;(0))*), (54)
with A7(t) = rj(t) — Fem(t). Explicitly, it reads

(47 (1)) =

2

N+1 m,n=1 Em +gn

12ksT & b}, - bl (1 ~ e-;rmt/y)

b - b Z b by (55)

1]0

in terms of the eigenvectors [Egs. (7) and (8)].

In the limit Pe — 0, the various time regimes well-known for
flexible polymers are obtained, with a linear increase in (A#2(t))
with increasing time for t/7r < 1/N2, (AF*(t)) ~+/t/%r in the
interval 1/N® < t/%g <« 1, and the plateau value (A#°(t)) = 2(¥g)
= (#2)/3 for t/ig > 1 [cf. Eqs. (42) and (43)].

With increasing activity, gradually a linear time regime appears,
and (AF2(t)) grows more strongly than t'? of the passive poly-
mer. The crossover time f. to the linear time regime depends on
the Péclet number. As long as Pe/ (6N ) < 1, the continuous poly-
mer model yields f./7r ~ (6N, /Pe) , consistent with Fig. 8. For
Pe/(6N?) > 1, the eigenvalues &, are complex. The linear time
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FIG. 8. Normalized bead mean-square displacements in the center-of-mass ref-
erence frame (AF2(t)) as a function of the time t/z for a discrete polymer of
length L// = N = 500 and various Péclet numbers Pe as indicated in the legend.
The colored dashed lines represent the second-order approximation of Eq. (S42).
The black lines indicate power laws.

regime is determined by the difference of the cos(wt) and sin(wmt)
terms, which appear from the exponential ¢“»' of the imaginary part
of the eigenvalue Zm From the condition w;t, ~ 1 for the largest
frequency wy, the crossover time f./7x ~ 37%/Pe is found, consis-
tent with Fig. 8. For times ¢/#r < 37%/Pe, an active quadratic time
regime is present. The dashed lines in Fig. 8 represent Eq. (55) with
the exponential function expanded up to second order in &,t/5.
Here, the linear terms of the real and imaginary parts of &, and
their product are most important and determine the time depen-
dence. Remarkably, the MSD is real, as expected for a physical
quantity, despite imaginary eigenvalues, as shown in Sec. S-II of the
supplementary material. For times ¢/7x > 7°N/Pe, the plateau value
NP /3 is assumed, where the crossover time t./7z = N /Pe follows
from the condition NI*/3 = 6Dt,, with D in Eq. (51).

As our numerical calculations show, the two terms in Eq. (542)
of the supplementary material cancel each other to some extent.
This poses a major challenge in the evaluation of the sums and
hampers the confirmation and interpretation of the observed linear
time dependence. However, the Pe dependence of the characteristic
crossover time t./7z = n°N/Pe to the plateau regime is remark-
able. This relation does not follow from the longest relaxation time,
(1 + (Pe/(67N))*)t/tr < 1, which is significantly smaller than
t./tr and exhibits a stronger dependence on Pe, but is rather
determined by the frequency w; in the case of Pe/(6N?) > 1.

C. Total bead mean-square displacement
The total MSD of the beads, Egs. (44) and (45),
2L2 coth(d(N+1)) ¢
coth(d) 7
. 1szT§: bl, - b}
N+1 m=1 Em
| 12ksT & b}, - b}
N+1 m,n=1 fm + fn

(Armt(t))

by by (1 - ¢ 7)

b - b1 e*fmf/?), (56)
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FIG. 9. Normalized total bead mean-square displacements (A72,(t)) (solid lines)
as a function of the time t/7g for a discrete polymer of length L/I = N = 500
and various Péclet numbers Pe as indicated in the legend. The dashed lines
present the corresponding center-of-mass MSDs, (AF2,(t)). The black dashed
lines indicate the active long-time diffusive regime, with the diffusion coefficient of
continuous polymers [Eq. (50)]. The black solid line indicates a power law.

[see Eq. (§43) of the supplementary material] is displayed in Fig. 9.
Evidently, (A7,,(¢)) is dominated by the bead MSD in the center-
of-mass reference frame up to {A¥4,(t)) ~ (#2). Strikingly, the lin-
ear time regime of (A#*(t)) for t/7g > n(6N/Pe)* and Pe/(6N?)
<1 and t/#g > 37*/Pe and Pe/(6N*) > 1 joins smoothly with the
respective regime in the CM-MSD, although (A7*(t)) assumes
the plateau value 2(#;) = (#;)/3, and the CM-MSD has not yet
reached the long-time asymptotic value. As shown in Fig. S2 of the
supplementary material, the contribution of the sums over modes
m,n# 0 in Eq. (56) to (AF%,(t)) becomes smaller with increasing
Pe for t/7r > m(6N/Pe)* and t/tr > 37 /Pe, respectively, and the
contribution of the sums over modes with m, n # 0 assumes a time-
independent value much smaller than (i‘é). Thus, the total MSD is
dominated by the term linear in time in Eq. (56). Contributions
from the internal dynamics cancel in Eq. (56), and the share from
the mode m = 0 prevails. At shorter times t/7g < 7(6N/Pe)? for
Pe/(6N?) < 1, the passive polymer total MSD is assumed. Here,

J
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the sums over modes m, n # 0 determine the dynamics. In the case

Pe/(6N*) > 1and t/ig <« 37*/Pe, cancellation of the linear terms in
the sums over modes m,n # 0 yields a ballistic time regime, as for
the MSD in the center-of-mass reference frame (Fig. 8).

The MSD reflects a complex interdependence of the dynam-
ics of the active beads. The active motion along the continuously
changing polymer contour implies strong correlations in the bead
translational motion, specifically on shorter time scales.

Our discussion of the MSD is focused on discrete APLPs. The
numerical evaluation of the sums of modes of the continuous poly-
mer model poses major challenges since it requires summation over
a huge number of modes, specifically for large Pe, and a high preci-
sion to compensate the large value of exponential factors containing
Pe/(6mpL). However, based on our continuum approximations of
APLPs for the CM-MSD, we can confidently state that the MSD
in the center-of-mass reference frame of the continuous polymer
model agrees with that of a discrete polymer model as long as
Pe $10° (Pe/(6N*) < 1) and t/7g 2 1/N*.

Section S-VII of the supplementary material presents a com-
parison between the total bead MSD of APLPs and ABPOs. The
dynamics of APLPs is faster than that of ABPOs over the consid-
ered range of Péclet numbers. However, on time scales larger than
the crossover time from the ballistic to the linear time dependence of
the MSD of APLPs, t/7r > 37°/Pe, the dynamics of ABPOs is faster
for large Pe because the MSD of their internal dynamics increases
as Pe*” and that of the center-of-mass motion as Pe’ and, thus,
exceeds that of the linear Pe dependence of D of APLPs as soon
as Pe > 3(pL)’. In general, the MSD of active polymers with these
different propulsion forces differs fundamentally, and they never
exhibit the same dynamical behavior.

D. End-to-end vector correlation function

The temporal end-to-end vector correlation functions
(Fe(t) - 7.(0)) and (r.(t) - r.(0)), normalized by their equilibrium
values, are

_ {Fe(t) -7(0))
O

_6kBT N bjnbi (N) (0) (N) )7 ~Ent/7
B e LA R NG

(re()) re0)) _ 167 &

“O="m T A

where rc = Pe/(67mpL).

Figure 10 displays end-to-end vector correlation functions for
various Péclet numbers. The respective correlation functions decay
approximately exponentially for t > 7z and approach the asymp-
totic behavior C4() ~ ¢™/™ in the limit £ — oo [Fig. 10(b)]. In the
limit ¢ — 0, all C4(t) curves approach the passive asymptotic time
dependence [inset of Fig. 10(b)]. The time dependence of the pas-
sive polymer crosses over from a linear regime for t < 7g/N* to a

min* (<14 (1)"e ™) (1 + (-1)"e ") (1 + (1)) iy,
[(m=n)2+4r2][(m+ n)? + 4r2](m? + r2) (n® + 12)

; (58)

compressed exponential ~In[C,(¢)] ~ t** and finally approaches

the exponential decay. The correlation functions of APLPs exhibit
a Pe-dependent crossover from the passive polymer behavior to the
asymptotic exponential decay. They decay faster with increasing Pe,
with a significantly slower decay at short times [Fig. 10(a)]. This is
clearly visible when C,(t) is presented as a function of the time t/71,
which shows a slower decay with increasing Pe before the asymp-
totic exponential decay is assumed. Hence, activity leads to a faster
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FIG. 10. (a) Semi-logarithmic representation of the normalized end-to-end vector
correlation function Cy(t) = (Fs(t) - Fe(0))/(F2) (solid lines) as a function of the
time t/r for discrete APLPs of length L// = N = 500 and various Péclet numbers
as indicated in the legend. The dashed lines represent the correlation functions
including only the longest relaxation time z4. (b) Normalized end-to-end vector
correlation function —In[C4(t)] as a function of the time t/71, where 7 is the
longest relaxation time, for various Péclet numbers. The inset shows — In[Cq4(t)]
as a function of the time t/7r. The black solid lines indicate power laws.

decorrelation of the end-to-end vector in time due to the decreasing
relaxation times with increasing activity. However, larger Pe lead to
a slower and non-exponential decay for t/7; S 1.

VI. SUMMARY AND CONCLUSIONS

We have presented analytical results for the conformational
and dynamical properties of models for discrete and continuous
Gaussian polymers, which are propelled by active forces along bonds
for the discrete polymer and along the local tangent for the con-
tinuous polymer. The propulsion forces imply non-symmetric/non-
Hermitian eigenvalue equations, which are solved by an expansion
into a biorthogonal basis set. The polar nature of the polymers leads
to a mode coupling in the mode amplitude correlation functions.
This is in contrast to active Brownian polymers (ABPOs)*”” and
gives rise to the emergence of distinctively different conformational
and dynamical features.

ARTICLE scitation.org/journalljcp

Within the applied models, the polymer conformational prop-
erties are independent of the active forces and are identical to those
of passive polymers. This is in contrast to ABPOs, which swell with
increasing activity,”"’* and some computer simulations of tan-
gentially driven active polymers, which reveal polymer shrinkage
with increasing activity.w‘m'“ However, in the latter cases, either
a different propulsion force is considered and/or excluded-volume
interactions are additionally taken into account. This restricts a
direct comparison of the various results. Excluded-volume inter-
actions strongly affect the conformations of active polymers. The
influence is particularly strong in two dimensions as has been shown
for ABPOs,”® which shrink for small Pe before they swell for large Pe,
aswell as APLPs.”” A similar shrinkage has been observed for ABPOs
in three dimensions.””'" Moreover, the simulation results in Ref.
82 suggest that the polymer mean-square end-to-end-distance scal-
ing exponent v decreases at significantly smaller Pe for polymers
in the presence of excluded-volume interactions than for phan-
tom polymers. The dependence of the polymer conformations on
the implementation of the applied tangential driving force is evi-
dent by comparing the simulation results of Refs. 81, 82, and 98. In
Refs. 81 and 98, active driving is along bond vectors and the radius
of gyration saturates at large Pe, whereas in Ref. 82, active driving is
associated with a bead in a direction given by the unit vector con-
necting the positions of the leading and trailing neighbors, and the
polymers continue to shrink with increasing Pe. Considering these
aspects, further simulation studies are required to resolve the influ-
ence of the various interactions and the suitable modeling of APLPs
on their conformational properties. In any case, the presented results
of APLPs are consistent with simulations of active polar linear poly-
mers in three dimensions and can qualitatively and quantitatively be
compared with them for moderate active forces.

The non-symmetric matrix in the eigenvalue problem of the
discrete APLPs model yields for Pe/(6N®) <1 real eigenvalues,
whereas complex eigenvalues appear for Pe/(6N?) > 1, with a single
relaxation time and activity-dependent frequencies. These features
of the active Gaussian model might appear also in simulations of
slightly different models since the respective Péclet numbers are
easily reached.

The coupling of modes leads to a maximum in the mode-
amplitude autocorrelation function—for a continuous polymer at
the mode number m, = Integer[Pe/(67mpL)]. This requires, for the
continuous polymer model, summation over an increasing num-
ber of modes with increasing Pe to achieve convergence and poses
a major computational difficulty for large activities.

The polymer center-of-mass mean-square displacement
(A#%,,(t)) exhibits an active ballistic time regime for (A7, (t))/
(#2) < 1, followed by a diffusive regime with an activity-dependent
diffusion coefficient, in agreement with simulations.””*> The
effective velocity in the ballistic regime increases linearly with the
Péclet number. Similarly, the effective diffusion coefficient increases
linearly with Pe and becomes independent of polymer length for
Pe > 1, in agreement with results of computer simulations.*” The
bead mean-square displacement in the center-of-mass reference
frame also shows a ballistic time regime for t/7r <« 37°/Pe and
Pe/(6N?) > 1. The contribution of the center-of-mass motion
to the total bead mean-square displacement is negligible for
(AP (1)) /(72) < 1, i.e., it is dominated by the active internal poly-
mer dynamics. For Pe > 1, the diffusive dynamics is quantitatively

J. Chem. Phys. 157, 194904 (2022); doi: 10.1063/5.0120493
Published under an exclusive license by AIP Publishing

157, 194904-11


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

described by the diffusion coefficient of Eq. (50) even on length
scales much smaller than (i‘?)

The dynamics of APLPs differs qualitatively from that of active
Brownian polymers, where the center-of-mass motion dominates
the overall polymer dynamics at large activities.”> This reflects a
complex interdependence of the dynamics of the active beads in
APLPs. The active motion along the continuously changing polymer
contour implies strong correlations in the bead translational motion,
especially on shorter time scales.

The active dynamics of APLPs exhibits similarities to the tank-
treating motion observed for active polar ring polymers (APRPs),”
which reveal a motion along the polymer contour. This is par-
ticularly pronounced for stiff rings. Thereby, the polar nature of
the linear active polymer, with a nonzero overall active force,
plays an important role and leads to different time regimes com-
pared to flexible APRPs. In particular, the long-time MSD of
APRPs is independent of activity and solely determined by thermal
fluctuations.

In Ref. 82, the influence of the active force on the polymer
center-of-mass motion is phenomenologically described by repre-
senting it as a colored noise random process. This is similar to the
active process in active Brownian polymers, whose beads or sites are
indeed exposed to colored noise.””' In contrast, in our approach,
the dynamics of the mode-amplitudes [Eq. (14)] is governed by
white noise thermal fluctuations, and the mode correlation func-
tions decay exponentially [Eq. (34)] as for a passive polymer. The
complexity of the dynamical behavior results from the tight cou-
pling of the various modes. The difference in the noise—colored vs
white —is reflected, e.g., in the dependence of the ballistic motion
and active long-time diffusion on the active force, which exhibits a
distinct dependence on the Péclet number, namely, linear for APLPs
and quadratic for ABPOs.

Our analytical study sheds light onto the unique dynami-
cal properties of APLPs and provides theoretical insight into yet
unrevealed dependencies on activity. This will be helpful in the inter-
pretation of experimental findings as well as the design of functional
active soft matter systems.

SUPPLEMENTARY MATERIAL

The supplementary material provides a derivation of the eigen-
values and eigenvectors of discrete APLPs, as well as the proof that
the position vectors #;(t) are real. In addition, various definitions
of conformational properties, displacements, and correlation func-
tions are given, and derivations of approximations for the short time
center-of-mass dynamics are presented. The odd-even effect in the
CM-MSD of discrete APLPs at high Péclet numbers is illustrated
and discussed. Movies of APLPs of length L/l = N =50 and N = 51
exemplify the respective dynamics. Furthermore, a comparison of
the total MSD of APLPs and ABPOs is performed.
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