000911849 001__ 911849
000911849 005__ 20240712100847.0
000911849 0247_ $$2doi$$a10.5194/acp-22-14957-2022
000911849 0247_ $$2ISSN$$a1680-7316
000911849 0247_ $$2ISSN$$a1680-7324
000911849 0247_ $$2Handle$$a2128/32851
000911849 0247_ $$2WOS$$aWOS:000889322700001
000911849 037__ $$aFZJ-2022-05097
000911849 082__ $$a550
000911849 1001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b0$$eCorresponding author
000911849 245__ $$aThe evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
000911849 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000911849 3367_ $$2DRIVER$$aarticle
000911849 3367_ $$2DataCite$$aOutput Types/Journal article
000911849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672836179_27125
000911849 3367_ $$2BibTeX$$aARTICLE
000911849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911849 3367_ $$00$$2EndNote$$aJournal Article
000911849 520__ $$aWe use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 km, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of SO2 to sulfate aerosols and induced a descent of the plume to 24–26 km over the first 3 weeks by radiative cooling. Whereas SO2 returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35∘ S and 20∘ N until June due to the zonal symmetry of the summer stratospheric circulation at 22–26 km. Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation. Sulfate aerosol optical depths derived from the IASI (Infrared Atmospheric Sounding Interferometer) infrared sounder show that during the first 2 months, the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, are associated with vorticity anomalies that may have enhanced the duration and impact of the plume.
000911849 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000911849 536__ $$0G:(DE-HGF)POF4-2A1$$a2A1 - REKLIM (CARF - CCA) (POF4-2A1)$$cPOF4-2A1$$fPOF IV$$x1
000911849 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911849 7001_ $$00000-0001-8759-4064$$aDuchamp, Clair$$b1
000911849 7001_ $$00000-0001-7440-2350$$aSellitto, Pasquale$$b2
000911849 7001_ $$0P:(DE-Juel1)173992$$aPodglajen, Aurélien$$b3
000911849 7001_ $$00000-0002-0236-7856$$aCarboni, Elisa$$b4
000911849 7001_ $$0P:(DE-HGF)0$$aSiddans, Richard$$b5
000911849 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b6
000911849 7001_ $$00000-0002-5466-1096$$aKhaykin, Sergey$$b7
000911849 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b8$$ufzj
000911849 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-14957-2022$$gVol. 22, no. 22, p. 14957 - 14970$$n22$$p14957 - 14970$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000911849 8564_ $$uhttps://juser.fz-juelich.de/record/911849/files/acp-22-14957-2022.pdf$$yOpenAccess
000911849 909CO $$ooai:juser.fz-juelich.de:911849$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b6$$kFZJ
000911849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b8$$kFZJ
000911849 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000911849 9131_ $$0G:(DE-HGF)POF4-2A1$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vREKLIM (CARF - CCA)$$x1
000911849 9141_ $$y2022
000911849 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000911849 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911849 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000911849 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000911849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911849 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000911849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000911849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000911849 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000911849 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000911849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000911849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000911849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000911849 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000911849 920__ $$lyes
000911849 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000911849 9801_ $$aFullTexts
000911849 980__ $$ajournal
000911849 980__ $$aVDB
000911849 980__ $$aI:(DE-Juel1)IEK-7-20101013
000911849 980__ $$aUNRESTRICTED
000911849 981__ $$aI:(DE-Juel1)ICE-4-20101013