
Resilience in (Time-Parallel) Spectral Deferred Corrections

April 26, 2022 Thomas Baumann Jülich Supercomputing Centre

Member of the Helmholtz Association

Faults: Same Computation, Same Result? Not in Space!

PHD Comics: To Touch the Sun [2]

Space craft uses three computers that perform the
same operations to make sure the computation is
correct
Frequent radiation induced bit flips this close to
the sun
Replication is simple and effective, but expensive
resilience strategy

Member of the Helmholtz Association April 26, 2022 Slide 1

Faults Will Come After You on Earth as Well!

Time

Ha
rd

wa
re

 re
lia

bi
lit

y

Vacuum tubes

Transistors

Parallel computers

Sketch (!) of hardware reliability evolution

Vacuum tube computers fail all the time
More reliable transistor based computing from the 1960s
Transistors shrink to gain efficiency at the cost of
reliability
Memory is protected by error correction codes, but
processing units and their caches remain exposed
Modern HPC is based on parallelism and the rate of
failure scales with the core count

Member of the Helmholtz Association April 26, 2022 Slide 2

Fault Rates in the Wild

Google in 2008: 25 to 70 faults per thousand device hours and Gbit [6]
Lawrence Livermore National Laboratory in 2007: Uncorrectable faults in L1 cache occur on
average every eight hours across the largest computer at the time [4]
Disastrous implications for exascale, unless we figure out a way to recover from faults!
Need more expensive ECCs or algorithm-based fault tolerance (ABFT)

PinT algorithms target large machines and need to be protected against faults
Iterative time marching schemes allow for cheap resilience against soft faults

Member of the Helmholtz Association April 26, 2022 Slide 3

Spectral Deferred Corrections (SDC) [3]: Serial for Now

Write ODE in Picard form:
u (t) = u (t0) +

∫ t

t0
f (u (τ)) dτ

Discretize using quadrature: (vector components correspond to quadrature nodes)

(I −∆tQF) (~u) = ~u0

Use preconditioner:
(I −∆tQ∆F) (~u) = ~u0 + ∆t (Q − Q∆) F (~u)

Iterate:
(I −∆tQ∆F)

(
~uk+1) = ~u0 + ∆t (Q − Q∆) F

(
~uk)

Member of the Helmholtz Association April 26, 2022 Slide 4

Strategies for Fault Correction in SDC

Error Oblivious Algorithms
It’s iterative, it’ll fix itself!
Adaptivity

→ Fault correction without explicit detection

Error Aware Algorithms
Check contraction factor
Hot Rod [5]

→ Algorithms detect faults

Four strategies for now:
1 Iterate to nirvana
2 Sweep it under the rug: Combine iterating with contraction factor estimates
3 Adaptivity
4 Hot Rod

Member of the Helmholtz Association April 26, 2022 Slide 5

1 Iterate to Nirvana
Advection of a Gaussian

0 2 4 6 8 10 12
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

||r
es

id
ua

l||

no faults
faults
TOL

Iterate until reaching residual threshold
Sometimes less efficient than restart
Faults to initial conditions can not be fixed
without restart

Member of the Helmholtz Association April 26, 2022 Slide 6

2 “Sweep it Under the Rug”1
Advection of a Gaussian

0 2 4 6 8 10
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

||r
es

id
ua

l||

no faults
faults
TOL

When is it more efficient to keep iterating
than to restart?

Estimate the contraction factor
Predict sweeps required for convergence
Restart or continue iterating
Bonus: If the contraction factor exceeds one,
restart only the last sweep
Here: Fix all faults with only one extra
iteration

1This is funny because people call SDC iterations “sweeps”

Member of the Helmholtz Association April 26, 2022 Slide 7

3 Adaptivity
Van der Pol Oscillator

6

4

2

0

u
u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

10 2

10 1

t

0

2

4

6

8

1e 5
t

TOL

Dynamically select the step size
Idea: e(n+1)

e(n) =
(

h(n+1)

h(n)

)k+1

Estimate local error ε
Plug in e(n+1) = εTOL and safety factor β

Next step size: h(n+1) = βh(n) (εTOL
ε

) 1
k

Recompute if ε > εTOL

Member of the Helmholtz Association April 26, 2022 Slide 8

Estimating the Local Error: Embedded Method

Compute two solutions u(k) and u(k−1) of orders k and k − 1
Act as if u(k) was the exact solution:

ε = ‖u(k) − u(k−1)‖ = ‖
(

u(k) − u∗
)
−
(

u(k−1) − u∗
)
‖ = ‖e(k) − e(k−1)‖ = e(k−1) +O

(
∆tk+1)

With SDC: Simply subtract two consecutive sweeps (with the right preconditioner)
Estimate the error of the second to last sweep with virtually no overhead
Estimate order k − 1 error, but advance with order k solution

Member of the Helmholtz Association April 26, 2022 Slide 9

Estimating the Local Error: Extrapolation based [7, 1]

Do Taylor expansions and find coefficients aj and bj finite difference style such that:

uextrapolation (t) =
n∑

j=1
aju (t − j∆t)− bj j∆t f (u (t − j∆t)) +O

(
∆t2n+1)

Estimate error:

εextrapolation = 1/P‖u − uextrapolation‖
= 1/P‖u∗ +O

(
∆tk+1)− (u∗ +O

(
∆t2n+1)+ (P − 1)O

(
∆tk+1)) ‖

= O
(
∆tk+1)+O

(
∆t2n+1)

Need to store both u and f from k+2
2 previous steps → large memory overhead

Member of the Helmholtz Association April 26, 2022 Slide 10

Estimating The Local Error

Embedded method Extrapolation method
Order estimate k k + 1

Computational overhead insignificant insignificant
Memory overhead insignificant large
Use with adaptivity simple tricky

→ Prefer embedded method, but what if we use both?

Member of the Helmholtz Association April 26, 2022 Slide 11

4 Hot Rod [5]

0

20

40

60

80

Piline Problem
v1
v2
p3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

10 9

10 8

10 7

10 6

10 5

10 4

10 3
embedded
extrapolation

difference

Estimate local error of sweep k − 1 with both
methods: εembedded and εextrapolation

Compute difference:

∆ =‖εembedded +O
(
∆tk+1)−(

εextrapolation +O
(
∆tk+1)) ‖

=O
(
∆tk+1)

Restart if ∆ > TOL
Need to advance with second to last sweep for
extrapolation estimate =⇒ significant
computational and memory overhead

Member of the Helmholtz Association April 26, 2022 Slide 12

Experiment: Faults in Van der Pol Oscillator

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time

6

4

2

0

u
u
u *

u *

fault

Manually flip random single bit in a random
iteration, collocation node and “problem position”
of the solution
Accept fault as recovered if e < 2efault−free

Compare to base scheme with fixed ∆t and k

Member of the Helmholtz Association April 26, 2022 Slide 13

Recovery Rates

0 5 10 15 20 25 30
Flipped bit

0.2

0.4

0.6

0.8

1.0

Re
co

ve
ry

 ra
te

Base
Iterate to nirvana
Sweep it under the rug
Adaptivity
Hot Rod

Low impact of faults in insignificant
mantissa bits
Schemes without restarts cannot fix faults to
initial conditions
Smaller faults might fly under the radar of
adaptivity but appear in the final solution

Member of the Helmholtz Association April 26, 2022 Slide 14

Overhead

Base Iterate to
nirvana

Sweep it under
the rug

Adaptivity Hot Rod
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
co

ve
ry

 ra
te

 /
Er

ro
r r

at
io

Recovery rate
Error ratio
Sweeps (no faults)
Sweeps

0

100

200

300

400

500

600

700

800

Sw
ee

ps

Difficult to match final error due to
timescale changes
Hot Rod is very resilient, but adds significant
cost
Adaptive schemes are resilient, efficient and
easy to implement (in serial SDC)
Negligible overhead from fault correction

Member of the Helmholtz Association April 26, 2022 Slide 15

How to PinT with SDC
Move from collocation problem for single step

(I −∆tQF) (~u) = ~u0

to composite collocation problem containing L steps
I −∆tQF
−N I −∆tQF

.
−N I −∆tQF



~u1
~u2
...
~uL

 =


~u0
0
...
0


No need to “fully” solve the collocation problems before sending solutions forward!

Solving the composite collocation problem iteratively allows for parallelization in time

Member of the Helmholtz Association April 26, 2022 Slide 16

Block Gauß-Seidel SDC
Advection with 8 processes

0 2 4 6
Rank

0

2

4

6

8

10

Ite
ra

tio
n

8

7

6

5

4

3

2

lo
g1

0(
re

sid
ua

l)

Eight steps need 24 iterations to converge in
serial SDC
A block of eight steps converges after 11
“composite iterations”
Simple communication structure
Expanding on this idea (a lot) ; PFASST

Member of the Helmholtz Association April 26, 2022 Slide 17

Next Steps

Implement the resilience strategies in pySDC
Try the same strategies with PinT (Block-Gauß-Seidel SDC, eventually PFASST)
Think of new resilience strategies
Try out more realistic fault injection
Make an attempt at dealing with dying processes

Member of the Helmholtz Association April 26, 2022 Slide 18

Summary

PinT is targeting huge machines, which are susceptible to faults → need ABFT
Iterative PinT schemes give ample opportunity for ABFT
Adaptivity+SDC for the win: Very efficient + good resilience
Hot Rod is too expensive: Need to sacrifice one iteration

Thank You for Your Attention

Member of the Helmholtz Association April 26, 2022 Slide 19

Sources I
J. Butcher and P. Johnston.
Estimating local truncation errors for runge-kutta methods.
Journal of Computational and Applied Mathematics, 45(1):203–212, 1993.

J. Cham.
To touch the sun.
https://physics.aps.org/articles/v14/178.
Accessed: 2-March-2022.

A. Dutt, L. Greengard, and V. Rokhlin.
Spectral deferred correction methods for ordinary differential equations.
BIT Numerical Mathematics, 40(2):241–266, 2000.

J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H. Streitz.
Extending stability beyond cpu millennium: a micron-scale atomistic simulation of kelvin-helmholtz instability.
In SC’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1–11. IEEE, 2007.

P.-L. Guhur, H. Zhang, T. Peterka, E. Constantinescu, and F. Cappello.
Lightweight and accurate silent data corruption detection in ordinary differential equation solvers.
In P.-F. Dutot and D. Trystram, editors, Euro-Par 2016: Parallel Processing, pages 644–656, Cham, 2016. Springer International Publishing.

B. Schroeder, E. Pinheiro, and W.-D. Weber.
Dram errors in the wild: a large-scale field study.
ACM SIGMETRICS Performance Evaluation Review, 37(1):193–204, 2009.

Member of the Helmholtz Association April 26, 2022 Slide 20

https://physics.aps.org/articles/v14/178

Sources II

L. Stoller and D. Morrison.
A method for the numerical integration of ordinary differential equations.
Mathematical Tables and Other Aids to Computation, 12(64):269–272, 1958.

Member of the Helmholtz Association April 26, 2022 Slide 21

