000911982 001__ 911982
000911982 005__ 20240712100910.0
000911982 0247_ $$2doi$$a10.5194/acp-22-14303-2022
000911982 0247_ $$2ISSN$$a1680-7316
000911982 0247_ $$2ISSN$$a1680-7324
000911982 0247_ $$2Handle$$a2128/32859
000911982 0247_ $$2WOS$$aWOS:000879750300001
000911982 037__ $$aFZJ-2022-05212
000911982 082__ $$a550
000911982 1001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou A.$$b0$$eCorresponding author
000911982 245__ $$aStratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
000911982 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000911982 3367_ $$2DRIVER$$aarticle
000911982 3367_ $$2DataCite$$aOutput Types/Journal article
000911982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669703761_19269
000911982 3367_ $$2BibTeX$$aARTICLE
000911982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911982 3367_ $$00$$2EndNote$$aJournal Article
000911982 520__ $$aThe quasi-biennial oscillation (QBO) is a major mode of climate variability in the tropical stratosphere with quasi-periodically descending westerly and easterly winds, modulating transport and distributions of key greenhouse gases such as water vapour and ozone. In 2016 and 2020, anomalous QBO easterlies disrupted the QBO's mean period of about 28 months previously observed. Here, we quantify the impact of these two QBO disruption events on the Brewer–Dobson circulation and respective distributions of water vapour and ozone using the ERA5 reanalysis and Microwave Limb Sounder (MLS) satellite observations, respectively. In 2016, both water vapour and ozone in the lower stratosphere decreased globally during the QBO disruption event by up to about 20 %. In 2020, the lower-stratospheric ozone only weakly decreased during the QBO disruption event, by up to about 10 %, while the lower-stratospheric water vapour increased by up to about 15 %. These dissimilarities in the anomalous circulation and the related ozone response between the year 2016 and the year 2020 result from differences in the tropical upwelling and in the secondary circulation of the QBO caused by differences in anomalous planetary and gravity wave breaking in the lower stratosphere near the equatorward upper flanks of the subtropical jet. The anomalous planetary and gravity wave breaking was stronger in the lower stratosphere between the tropopause and the altitude of about 23 km during the QBO disruption events in 2016 than in 2020. However, the differences in the response of lower-stratospheric water vapour to the QBO disruption events between the year 2016 and the year 2020 are mainly due to the differences in cold-point temperatures induced by Australian wildfire, which moistened the lower stratosphere, thereby obscuring the impact of the QBO disruption event in 2020 on water vapour in the lower stratosphere. Our results highlight the need for a better understanding of the causes of the QBO disruption, their interplay with other modes of climate variability in the Indo-Pacific region, including the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), and their impacts on water vapour and ozone in the upper troposphere/lower stratosphere in the face of a changing climate.
000911982 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000911982 536__ $$0G:(GEPRIS)429838442$$aDFG project 429838442 - Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus? $$c429838442$$x1
000911982 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911982 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b1$$ufzj
000911982 7001_ $$0P:(DE-Juel1)192244$$aHegglin, Michaela Imelda$$b2$$ufzj
000911982 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b3
000911982 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b4
000911982 7001_ $$00000-0002-5466-1096$$aKhaykin, Sergey$$b5
000911982 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6
000911982 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-14303-2022$$gVol. 22, no. 21, p. 14303 - 14321$$n21$$p14303 - 14321$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000911982 8564_ $$uhttps://juser.fz-juelich.de/record/911982/files/acp-22-14303-2022.pdf$$yOpenAccess
000911982 909CO $$ooai:juser.fz-juelich.de:911982$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b0$$kFZJ
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b1$$kFZJ
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192244$$aForschungszentrum Jülich$$b2$$kFZJ
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b3$$kFZJ
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b4$$kFZJ
000911982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
000911982 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000911982 9141_ $$y2022
000911982 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000911982 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911982 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000911982 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000911982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911982 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000911982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000911982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000911982 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000911982 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000911982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000911982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000911982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000911982 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000911982 920__ $$lyes
000911982 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000911982 9801_ $$aFullTexts
000911982 980__ $$ajournal
000911982 980__ $$aVDB
000911982 980__ $$aUNRESTRICTED
000911982 980__ $$aI:(DE-Juel1)IEK-7-20101013
000911982 981__ $$aI:(DE-Juel1)ICE-4-20101013