001     911982
005     20240712100910.0
024 7 _ |a 10.5194/acp-22-14303-2022
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/32859
|2 Handle
024 7 _ |a WOS:000879750300001
|2 WOS
037 _ _ |a FZJ-2022-05212
082 _ _ |a 550
100 1 _ |a Diallo, Mohamadou A.
|0 P:(DE-Juel1)169614
|b 0
|e Corresponding author
245 _ _ |a Stratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
260 _ _ |a Katlenburg-Lindau
|c 2022
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669703761_19269
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The quasi-biennial oscillation (QBO) is a major mode of climate variability in the tropical stratosphere with quasi-periodically descending westerly and easterly winds, modulating transport and distributions of key greenhouse gases such as water vapour and ozone. In 2016 and 2020, anomalous QBO easterlies disrupted the QBO's mean period of about 28 months previously observed. Here, we quantify the impact of these two QBO disruption events on the Brewer–Dobson circulation and respective distributions of water vapour and ozone using the ERA5 reanalysis and Microwave Limb Sounder (MLS) satellite observations, respectively. In 2016, both water vapour and ozone in the lower stratosphere decreased globally during the QBO disruption event by up to about 20 %. In 2020, the lower-stratospheric ozone only weakly decreased during the QBO disruption event, by up to about 10 %, while the lower-stratospheric water vapour increased by up to about 15 %. These dissimilarities in the anomalous circulation and the related ozone response between the year 2016 and the year 2020 result from differences in the tropical upwelling and in the secondary circulation of the QBO caused by differences in anomalous planetary and gravity wave breaking in the lower stratosphere near the equatorward upper flanks of the subtropical jet. The anomalous planetary and gravity wave breaking was stronger in the lower stratosphere between the tropopause and the altitude of about 23 km during the QBO disruption events in 2016 than in 2020. However, the differences in the response of lower-stratospheric water vapour to the QBO disruption events between the year 2016 and the year 2020 are mainly due to the differences in cold-point temperatures induced by Australian wildfire, which moistened the lower stratosphere, thereby obscuring the impact of the QBO disruption event in 2020 on water vapour in the lower stratosphere. Our results highlight the need for a better understanding of the causes of the QBO disruption, their interplay with other modes of climate variability in the Indo-Pacific region, including the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), and their impacts on water vapour and ozone in the upper troposphere/lower stratosphere in the face of a changing climate.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|x 0
|f POF IV
536 _ _ |a DFG project 429838442 - Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus?
|0 G:(GEPRIS)429838442
|c 429838442
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 1
|u fzj
700 1 _ |a Hegglin, Michaela Imelda
|0 P:(DE-Juel1)192244
|b 2
|u fzj
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 3
700 1 _ |a Grooß, Jens-Uwe
|0 P:(DE-Juel1)129122
|b 4
700 1 _ |a Khaykin, Sergey
|0 0000-0002-5466-1096
|b 5
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 6
773 _ _ |a 10.5194/acp-22-14303-2022
|g Vol. 22, no. 21, p. 14303 - 14321
|0 PERI:(DE-600)2069847-1
|n 21
|p 14303 - 14321
|t Atmospheric chemistry and physics
|v 22
|y 2022
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/911982/files/acp-22-14303-2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911982
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-12-18T05:37:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-12-18T05:37:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2019-12-18T05:37:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21