000911984 001__ 911984
000911984 005__ 20230123110745.0
000911984 0247_ $$2doi$$a10.1039/D2SM01021F
000911984 0247_ $$2ISSN$$a1744-683X
000911984 0247_ $$2ISSN$$a1744-6848
000911984 0247_ $$2Handle$$a2128/33114
000911984 0247_ $$2pmid$$a36440620
000911984 0247_ $$2WOS$$aWOS:000891229600001
000911984 037__ $$aFZJ-2022-05214
000911984 041__ $$aEnglish
000911984 082__ $$a530
000911984 1001_ $$0P:(DE-HGF)0$$aKühnhammer, Matthias$$b0$$eCorresponding author
000911984 245__ $$aStructure formation of PNIPAM microgels in foams and foam films
000911984 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2022
000911984 3367_ $$2DRIVER$$aarticle
000911984 3367_ $$2DataCite$$aOutput Types/Journal article
000911984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671024460_23230
000911984 3367_ $$2BibTeX$$aARTICLE
000911984 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911984 3367_ $$00$$2EndNote$$aJournal Article
000911984 520__ $$aResponsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.
000911984 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000911984 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000911984 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911984 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000911984 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000911984 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000911984 7001_ $$0P:(DE-HGF)0$$aGräff, Kevin$$b1
000911984 7001_ $$0P:(DE-HGF)0$$aLoran, Edwin$$b2
000911984 7001_ $$0P:(DE-HGF)0$$aSoltwedel, Olaf$$b3
000911984 7001_ $$0P:(DE-HGF)0$$aLöhmann, Oliver$$b4
000911984 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b5$$ufzj
000911984 7001_ $$0P:(DE-HGF)0$$avon Klitzing, Regine$$b6
000911984 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D2SM01021F$$gp. 10.1039.D2SM01021F$$n48$$p9249-9262 $$tSoft matter$$v18$$x1744-683X$$y2022
000911984 8564_ $$uhttps://juser.fz-juelich.de/record/911984/files/d2sm01021f.pdf
000911984 8564_ $$uhttps://juser.fz-juelich.de/record/911984/files/frielinghaus_191clean.pdf$$yPublished on 2022-10-19. Available in OpenAccess from 2023-10-19.
000911984 8564_ $$uhttps://juser.fz-juelich.de/record/911984/files/frielinghaus_191si.pdf$$yPublished on 2022-10-19. Available in OpenAccess from 2023-10-19.
000911984 909CO $$ooai:juser.fz-juelich.de:911984$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000911984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b5$$kFZJ
000911984 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000911984 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000911984 9141_ $$y2022
000911984 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911984 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911984 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911984 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-13$$wger
000911984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2021$$d2022-11-13
000911984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000911984 920__ $$lyes
000911984 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000911984 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000911984 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000911984 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000911984 980__ $$ajournal
000911984 980__ $$aVDB
000911984 980__ $$aUNRESTRICTED
000911984 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000911984 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000911984 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000911984 980__ $$aI:(DE-588b)4597118-3
000911984 9801_ $$aFullTexts