

Parallelizing SDC Across the Method

November 1, 2022 | Thomas Baumann, Ruth Schöbel, Robert Speck | Jülich Supercomputing Centre

Outline

Are you asking yourself any of the following questions?

- What is SDC?
- 2 How could we parallelize this across the method?
- 3 What have Robert and Ruth published about this already?
- 4 What are Ruth and me up to in this area?
- 5 Audience participation: What are you doing like this?

Then today is your lucky day!

Actually, it's a boatload of equations, so no. It's not your lucky day...

The Collocation Problem

Consider the Picard form of an initial value problem on $[T_0, T_1]$

$$u(t) = u_0 + \int_{T_0}^t f(u(s))ds,$$

discretized using spectral quadrature rules with nodes t_m :

$$u_m = u_0 + \Delta t \sum_{l=1}^{M} q_{m,l} f(u_l) \approx u_0 + \int_{T_0}^{t_m} f(u(s)) ds,$$

 \Rightarrow corresponds to a fully implicit Runge-Kutta method on $[T_0, T_1]$.

The Collocation Problem

Consider the Picard form of an initial value problem on $[T_0, T_1]$

$$u(t) = u_0 + \int_{T_0}^t f(u(s))ds,$$

discretized using spectral quadrature rules with nodes t_m :

$$(I - \Delta t Q F)(\vec{u}) = \vec{u}_0$$

 \Rightarrow corresponds to a fully implicit Runge-Kutta method on $[T_0, T_1]$.

 ${\it Q}$ is typically dense, so solving this system directly is very expensive!

Solving the Collocation Problem

A few popular approaches...

- Serial in time
 - Diagonally implicit Runge-Kutta (DIRK): Larger, but lower triangular Q
 - **2** Explicit Runge-Kutta: Larger, but strictly lower triangular **Q**
 - **3** Spectral deferred corrections (SDC): Iterate with lower triangular preconditioner Q_{Δ}

- Parallel across the method
 - Diagonalize Q before solving: Parallel computation at the expense of extra work
 - SDC with diagonal preconditioner: Parallel computation at the cost of possibly more iterations

Solving the Collocation Problem

A few popular approaches...

- Serial in time
 - 1 Diagonally implicit Runge-Kutta (DIRK): Larger, but lower triangular Q
 - 2 Explicit Runge-Kutta: Larger, but strictly lower triangular Q
 - **3** Spectral deferred corrections (SDC): Iterate with lower triangular preconditioner Q_{Δ}

- Parallel across the method
 - Diagonalize Q before solving: Parallel computation at the expense of extra work
 - 2 SDC with diagonal preconditioner: Parallel computation at the cost of possibly more iterations

Spectral Deferred Corrections

• Standard Picard iteration is Richardson for $(I - \Delta tQF)(\vec{u}) = \vec{u}_0$, i.e.

$$\vec{u}^{k+1} = \vec{u}^k + \underbrace{\left(\vec{u}_0 - (I - \Delta tQF)(\vec{u}^k)\right)}_{\text{residual } \vec{r}^k}$$

• Preconditioning: use simpler (lower triangular) integration rule Q_{Δ} with

$$(I - \Delta t Q_{\Delta} F)(\vec{u}^{k+1}) = (I - \Delta t Q_{\Delta} F)(\vec{u}^k) + (\vec{u}_0 - (I - \Delta t Q F)(\vec{u}^k))$$

This corresponds to spectral deferred corrections (SDC)!

Spectral Deferred Corrections

• Standard Picard iteration is Richardson for $(I - \Delta tQF)(\vec{u}) = \vec{u}_0$, i.e.

$$\vec{u}^{k+1} = \vec{u}^k + \underbrace{\left(\vec{u}_0 - (I - \Delta tQF)(\vec{u}^k)\right)}_{\text{residual } \vec{r}^k}$$

• Preconditioning: use simpler (lower triangular) integration rule Q_{Δ} with

$$(I - \Delta t Q_{\Delta} F)(\vec{u}^{k+1}) = \vec{u}_0 + \Delta t (Q - Q_{\Delta}) F(\vec{u}^k)$$

This corresponds to **spectral deferred corrections (SDC)**!

Spectral Deferred Corrections: Role of the Preconditioner

• Solve defect equation using Q_{Δ} :

$$ec{\delta}^{k+1} - \Delta t Q_{\Delta} F(ec{u}^k + ec{\delta}^{k+1}) = ec{r}^k - \Delta t Q_{\Delta} F(ec{u}^k)$$

• On right hand side: residual \vec{r}^k computed with full Q:

$$\vec{r}^k = \vec{u}_0 + \Delta t Q F(\vec{u}^k) - \vec{u}^k$$

Refine the solution with defect:

$$\vec{u}^{k+1} = \vec{u}^k + \vec{\delta}^{k+1} = \vec{u}^k + \underbrace{\vec{u}_0 + \Delta t Q F(\vec{u}^k) - \vec{u}^k}_{\vec{r}^k} + \Delta t Q_{\Delta}(F(\underbrace{\vec{u}^k + \vec{\delta}^{k+1}}_{\vec{u}^{k+1}}) - F(\vec{u}^k))$$

Simplifies to the familiar:

$$(I - \Delta t Q_{\Delta} F)(\vec{u}^{k+1}) = \vec{u}_0 + \Delta t (Q - Q_{\Delta}) F(\vec{u}^k)$$

Diagonalize existing preconditioners

Want to solve: $(I - \Delta t Q_{\Delta} F)(\vec{u}^{k+1}) = rhs$

• For linear problems:
$$Q_{\Lambda}F = Q_{\Lambda} \otimes A$$
, $Q_{\Lambda} \in \mathbb{R}^{M \times M}$, $A \in \mathbb{R}^{N \times N}$

Diagonalize:

$$Q_{\Delta} \otimes A = (V_{Q_{\Delta}} \otimes I_{N})(I_{M} \otimes I_{N} - \Delta t \Lambda_{Q_{\Delta}} \otimes A)(V_{Q_{\Delta}} \otimes I_{N})^{-1}$$

• Multiply by $(V_{Q_{\Delta}} \otimes I_N)^{-1}$ to get

$$\underbrace{\left(I_{M}\otimes I_{N}-\Delta t \Lambda_{Q_{\Delta}}\otimes A\right)}_{\text{block diagonal}}\tilde{\vec{u}}^{k+1}=r\tilde{h}s$$

- Solve and multiply by $(V_{Q_{\wedge}} \otimes I_{N})$ to obtain \vec{u}^{k+1}
- ullet $(V_{Q_{\Delta}}\otimes I_{N})$ is dense \Longrightarrow all-to-all communication \Longrightarrow best for shared memory parallelization

Quasi-Newton scheme for non-linear problems

Define:

$$G = (I - \Delta t Q_{\Delta} F)(\vec{u}^k) - rhs$$

Build Jacobian of G:

$$J_G = I - \Delta t Q_{\Delta} J_F(\vec{u}^k),$$

with

$$J_F(\vec{u}^k) = \operatorname{diag}(f'(u_1),...,f'(u_M)) \in \mathbb{R}^{MN \times MN}$$

Newton iteration:

$$J_G(\vec{u}^k)\vec{e}^j = -G(\vec{u}^k), \quad \vec{u}^{k+1} = \vec{u}^k + \vec{e}^j$$

■ Diagonalize Q_{Δ} :

$$((V_{Q_{\Delta}}\otimes I)^{-1}-\Delta t(\Lambda_{Q_{\Delta}}\otimes I_{N})\underbrace{(V_{Q_{\Delta}}\otimes I_{N})J_{F}(\vec{u}^{k})}_{\text{dense}})\vec{e}^{j}=-\tilde{G}(\vec{u}^{k})$$

Quasi-Newton scheme for non-linear problems

Define:

$$G = (I - \Delta t Q_{\Delta} F)(\vec{u}^k) - rhs$$

Build approximate Jacobian of G:

$$J_G = I - \Delta t Q_{\Delta} J_F(\vec{u}_0),$$

with

$$J_F(\vec{u}_0) = diag(f'(u_0),...,f'(u_0)) = I_M \otimes f'(u_0)$$

• Quasi Newton iteration:

$$J_G(\vec{u}_0)\vec{e}^j = -G(\vec{u}^k), \quad \vec{u}^{k+1} = \vec{u}^k + \vec{e}^j$$

■ Diagonalize Q_{Δ} :

$$\underbrace{\left(1_M\otimes 1_N - \Delta t \bigwedge_{Q_\Delta} \otimes f'(u_0)\right)}_{\mathsf{block diagonal}} \tilde{\vec{e}}^j = -\tilde{G}(\vec{u}^k)$$

Regular Newton converges quadratically, but quasi-Newton only linearly!

Diagonalize the Quadrature Matrix

Both a Runge-Kutta method and an SDC method

For suitable choices of the M collocation nodes, Q can be diagonalized, i.e. for linear problems

$$(I - \Delta t Q F)(\vec{u}) = (I - \Delta t Q \otimes A)\vec{u} = (V_Q \otimes I)(I - \Delta t \Lambda_Q \otimes A)(V_Q \otimes I)^{-1}\vec{u}$$

Remarks:

- ullet Equivalent to diagonalizing Q_{Δ} if $Q_{\Delta}=Q$
- This is a direct solver for linear problems
- Extension to nonlinear problems via inexact Newton
- Classical approach to deal with fully-implicit RK methods
- Beware: Λ_Q has complex entries!

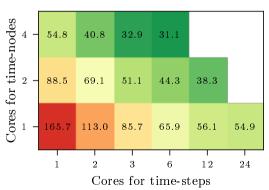
XXXtra Parallel: Combine PFASST with Parallel SDC

Ruth and Robert in "PFASST-ER: Combining the Parallel Full Approximation Scheme in Space and Time with parallelization across the method" (2020)

Idea: Use parallel SDC sweeps within parallel time-steps.

Example: 2D Allen-Cahn, fully-implicit, 256x256 DOFs in space, up to 24 available cores.

Best parallel efficiency: Saturate node-parallelism before doing step-parallelism.



What if the preconditioner was diagonal to begin with?

Want to solve:
$$(I - \Delta t Q_{\Delta} F)(\vec{u}^{k+1}) = rhs$$

- Q_{Δ} is already diagonal: $Q_{\Delta} = \Lambda$
- We get $(I \Delta t \Lambda F)(\vec{u}^{k+1}) = \mathit{rhs}$
- This decouples to $(1 \Delta t \lambda_i f)(u_i^{k+1}) = rhs_i$
- Parallel sweeps with standard Newton scheme for non-linear problems!

Robert in "Parallelizing spectral deferred corrections across the method" (2018)

- Diagonal elements of the full quadrature matrix
- 2 Diagonal implicit Euler
- 3 Minimize the spectral radius

Robert in "Parallelizing spectral deferred corrections across the method" (2018)

Diagonal elements of the full quadrature matrix

$$Q^{Q_{\mathsf{par}}}_{\Delta} = \mathsf{diag}(q_{ii}),$$

with q_{ii} the diagonal elements of Q. Implemented as "Qpar" in pySDC.

- 2 Diagonal implicit Euler
- 3 Minimize the spectral radius

Robert in "Parallelizing spectral deferred corrections across the method" (2018)

- Diagonal elements of the full quadrature matrix
- 2 Diagonal implicit Euler

$$Q_{\Delta}^{\mathsf{IEpar}} = \mathsf{diag}(au_i),$$

with τ_i the nodes of the quadrature rule.

Implemented as "IEpar" in pySDC.

Note: Standart implicit Euler integrates from node to node:

$$q_{\Delta ij}^{\mathsf{IE}} = egin{cases} au_j - au_{j-1}, & 1 < j \leq i \ au_j, & j = 1 \ 0, & \mathsf{otherwise} \end{cases}$$

3 Minimize the spectral radius

Robert in "Parallelizing spectral deferred corrections across the method" (2018)

- Diagonal elements of the full quadrature matrix
- 2 Diagonal implicit Euler
- Minimize the spectral radius Implemented as "MIN" in pySDC.
 - Dahlquist equation: $u_t = \lambda u$ (linear ODE)
 - SDC iteration matrix:

$$\mathcal{K} = \lambda \Delta t Q_{\Delta} (\mathit{I} - \lambda \Delta t Q_{\Delta})^{-1} \left(Q_{\Delta}^{-1} \mathit{Q} - \mathit{I}
ight) \;
ightarrow \; ec{u}^{k+1} = \mathit{K} ec{u}^{k}$$

Stiff limit:

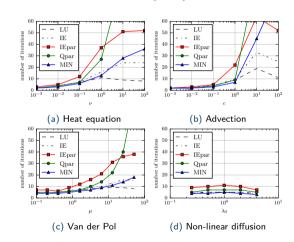
$$|\lambda \Delta t| o \infty$$
: $K o I - Q_{\Delta}^{-1}Q := K_{\infty}$

independent of $\boldsymbol{\lambda}$

• Minimize spectral radius $\rho(K_{\infty})$ by choice of diagonal Q_{Δ} using SCIPY

Robert in "Parallelizing spectral deferred corrections across the method" (2018)

- For small parameters i.e. non-stiff problems, all approaches work as well as popular LU and IE preconditioners
- For stiff problems, only MIN works sometimes
- Same iteration count means lower execution time because of parallelism



Find New Diagonal Preconditioners for SDC

Brought to you by Ruth and the Al gang

Go from minimizing $\rho(K_{\infty})$ to minimizing range of $\rho(K_{\lambda})$

- ullet Optimize preconditioner for Dahlquist problem with specific λ
- ullet Precompute a range of preconditioners for various λ
- Use FFT for space-discretization to obtain a system of Dahlquist problems¹
- Solve each Dahlquist problem with its optimal preconditioner
- Option: Use reinforcement learning

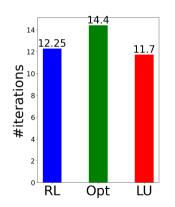
¹Derivatives are multiplications in Fourier space

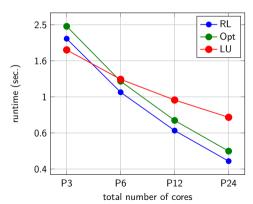
Find New Diagonal Preconditioners for SDC with Al

Ruth and the Al gang

Example:

Schrödinger equation: $u_t = (\Delta u - 6u|u|^2)i$ on $[0,2\pi]^3$, space-parallel LU-based SDC vs. parallel SDC





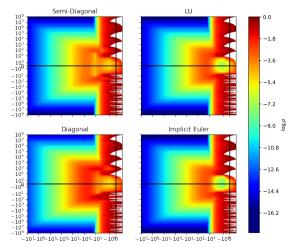
Generate Diagonal Preconditioners Using Adaptivity

Optimization problem:

- Adaptivity controls the step size
- Solve a reference problem over fixed interval in time
- Count iterations and minimize with diagonal elements as input

 Q_{Δ} does not need to be diagonal!

- In pySDC: First column of Q_△ corresponds to initial conditions
- Initial conditions are known on all ranks
- Can do parallel midpoint method for instance



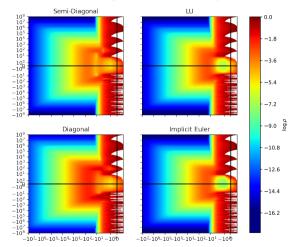
Generate Diagonal Preconditioners Using Adaptivity

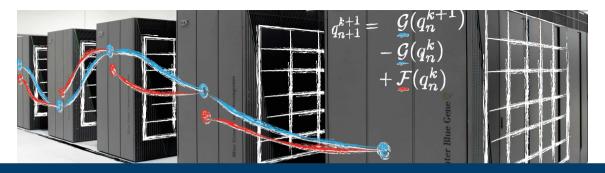
Optimization problem:

- Adaptivity controls the step size
- Solve a reference problem over fixed interval in time
- Count iterations and minimize with diagonal elements as input

Q_{Δ} does not need to be diagonal!

- In pySDC: First column of Q_△ corresponds to initial conditions
- Initial conditions are known on all ranks
- Can do parallel midpoint method for instance





Parallelizing SDC Across the Method

November 1, 2022 | Thomas Baumann, Ruth Schöbel, Robert Speck | Jülich Supercomputing Centre

