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Outline

Are you asking yourself any of the following questions?

1 What is SDC?
2 How could we parallelize this across the method?
3 What have Robert and Ruth published about this already?
4 What are Ruth and me up to in this area?
5 Audience participation: What are you doing like this?

Then today is your lucky day!

Actually, it’s a boatload of equations, so no. It’s not your lucky day...
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The Collocation Problem

Consider the Picard form of an initial value problem on [T0,T1]

u(t) = u0 +
∫ t

T0

f (u(s))ds,

discretized using spectral quadrature rules with nodes tm:

um = u0 + ∆t
M∑

l=1
qm,l f (ul ) ≈ u0 +

∫ tm

T0

f (u(s))ds,

⇒ corresponds to a fully implicit Runge-Kutta method on [T0,T1].
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The Collocation Problem

Consider the Picard form of an initial value problem on [T0,T1]

u(t) = u0 +
∫ t

T0

f (u(s))ds,

discretized using spectral quadrature rules with nodes tm:

(I −∆tQF )(~u) = ~u0

⇒ corresponds to a fully implicit Runge-Kutta method on [T0,T1].

Q is typically dense, so solving this system directly is very expensive!
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Solving the Collocation Problem
A few popular approaches...

1 Serial in time
1 Diagonally implicit Runge-Kutta (DIRK): Larger, but lower triangular Q
2 Explicit Runge-Kutta: Larger, but strictly lower triangular Q
3 Spectral deferred corrections (SDC): Iterate with lower triangular preconditioner Q∆

2 Parallel across the method
1 Diagonalize Q before solving: Parallel computation at the expense of extra work
2 SDC with diagonal preconditioner: Parallel computation at the cost of possibly more iterations
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Spectral Deferred Corrections

Standard Picard iteration is Richardson for (I −∆tQF )(~u) = ~u0, i.e.

~uk+1 = ~uk +
(
~u0 − (I −∆tQF )(~uk)

)︸ ︷︷ ︸
residual ~rk

Preconditioning: use simpler (lower triangular) integration rule Q∆ with

(I −∆tQ∆F )(~uk+1) = (I −∆tQ∆F )(~uk) +
(
~u0 − (I −∆tQF )(~uk)

)
This corresponds to spectral deferred corrections (SDC)!
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Spectral Deferred Corrections

Standard Picard iteration is Richardson for (I −∆tQF )(~u) = ~u0, i.e.

~uk+1 = ~uk +
(
~u0 − (I −∆tQF )(~uk)

)︸ ︷︷ ︸
residual ~rk

Preconditioning: use simpler (lower triangular) integration rule Q∆ with

(I −∆tQ∆F )(~uk+1) = ~u0 + ∆t (Q − Q∆) F (~uk)

This corresponds to spectral deferred corrections (SDC)!
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Spectral Deferred Corrections: Role of the Preconditioner
Solve defect equation using Q∆:

~δk+1 −∆tQ∆F (~uk + ~δk+1) = ~r k −∆tQ∆F (~uk)

On right hand side: residual ~r k computed with full Q:

~r k = ~u0 + ∆tQF (~uk)− ~uk

Refine the solution with defect:

~uk+1 = ~uk + ~δk+1 = ~uk + ~u0 + ∆tQF (~uk)− ~uk︸ ︷︷ ︸
~rk

+∆tQ∆(F (~uk + ~δk+1︸ ︷︷ ︸
~uk+1

)− F (~uk))

Simplifies to the familiar:

(I −∆tQ∆F )(~uk+1) = ~u0 + ∆t (Q − Q∆) F (~uk)
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SDC with Diagonal Preconditioner
Diagonalize existing preconditioners

Want to solve: (I −∆tQ∆F )(~uk+1) = rhs
For linear problems: Q∆F = Q∆ ⊗ A, Q∆ ∈ RM×M , A ∈ RN×N

Diagonalize:
Q∆ ⊗ A = (VQ∆ ⊗ IN)(IM ⊗ IN −∆tΛQ∆ ⊗ A)(VQ∆ ⊗ IN)−1

Multiply by (VQ∆ ⊗ IN)−1 to get

(IM ⊗ IN −∆tΛQ∆ ⊗ A)︸ ︷︷ ︸
block diagonal

~̃uk+1 = ˜rhs

Solve and multiply by (VQ∆ ⊗ IN) to obtain ~uk+1

(VQ∆ ⊗ IN) is dense =⇒ all-to-all communication =⇒ best for shared memory parallelization
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SDC with Diagonal Preconditioner
Quasi-Newton scheme for non-linear problems

Define:
G = (I −∆tQ∆F )(~uk)− rhs

Build Jacobian of G :
JG = I −∆tQ∆JF (~uk),

with
JF (~uk) = diag(f ′(u1),...,f ′(uM)) ∈ RMN×MN

Newton iteration:
JG (~uk)~ej = −G(~uk), ~uk+1 = ~uk +~ej

Diagonalize Q∆:

((VQ∆ ⊗ I)−1 −∆t(ΛQ∆ ⊗ IN) (VQ∆ ⊗ IN)JF (~uk)︸ ︷︷ ︸
dense

)~ej = −G̃(~uk)
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SDC with Diagonal Preconditioner
Quasi-Newton scheme for non-linear problems

Define:
G = (I −∆tQ∆F )(~uk)− rhs

Build approximate Jacobian of G :
JG = I −∆tQ∆JF (~u0),

with
JF (~u0) = diag(f ′(u0),...,f ′(u0)) = IM ⊗ f ′(u0)

Quasi Newton iteration:
JG (~u0)~ej = −G(~uk), ~uk+1 = ~uk +~ej

Diagonalize Q∆:
(1M ⊗ 1N −∆tΛQ∆ ⊗ f ′(u0))︸ ︷︷ ︸

block diagonal

~̃ej = −G̃(~uk)

Regular Newton converges quadratically, but quasi-Newton only linearly!
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Diagonalize the Quadrature Matrix
Both a Runge-Kutta method and an SDC method

For suitable choices of the M collocation nodes, Q can be diagonalized, i.e. for linear problems

(I −∆tQF )(~u) = (I −∆tQ ⊗ A)~u = (VQ ⊗ I)(I −∆tΛQ ⊗ A)(VQ ⊗ I)−1~u

Remarks:
Equivalent to diagonalizing Q∆ if Q∆ = Q
This is a direct solver for linear problems
Extension to nonlinear problems via inexact Newton
Classical approach to deal with fully-implicit RK methods
Beware: ΛQ has complex entries!
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XXXtra Parallel: Combine PFASST with Parallel SDC
Ruth and Robert in “PFASST-ER: Combining the Parallel Full Approximation Scheme in Space

and Time with parallelization across the method” (2020)

Idea: Use parallel SDC sweeps within parallel time-steps.
Example: 2D Allen-Cahn, fully-implicit, 256x256 DOFs in space, up to 24 available cores.
Best parallel efficiency: Saturate node-parallelism before doing step-parallelism.

1 2 3 6 12 24

Cores for time-steps

1

2

4

C
o
re
s
fo
r
ti
m
e
-n
o
d
e
s

88.5

31.1

56.1

38.3

65.9

32.954.8 40.8

44.3

113.0

69.1

54.9

51.1

85.7165.7

Member of the Helmholtz Association November 1, 2022 Slide 9



SDC with Diagonal Preconditioner
What if the preconditioner was diagonal to begin with?

Want to solve: (I −∆tQ∆F )(~uk+1) = rhs

Q∆ is already diagonal: Q∆ = Λ
We get (I −∆tΛF )(~uk+1) = rhs
This decouples to (1−∆tλi f )(uk+1

i ) = rhsi

Parallel sweeps with standard Newton scheme for non-linear problems!
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Design Diagonal Preconditioners
Robert in “Parallelizing spectral deferred corrections across the method” (2018)

1 Diagonal elements of the full quadrature matrix
2 Diagonal implicit Euler
3 Minimize the spectral radius
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Design Diagonal Preconditioners
Robert in “Parallelizing spectral deferred corrections across the method” (2018)

1 Diagonal elements of the full quadrature matrix

QQpar
∆ = diag(qii ),

with qii the diagonal elements of Q.
Implemented as “Qpar” in pySDC.

2 Diagonal implicit Euler
3 Minimize the spectral radius
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Design Diagonal Preconditioners
Robert in “Parallelizing spectral deferred corrections across the method” (2018)

1 Diagonal elements of the full quadrature matrix
2 Diagonal implicit Euler

QIEpar
∆ = diag(τi ),

with τi the nodes of the quadrature rule.
Implemented as “IEpar” in pySDC.
Note: Standart implicit Euler integrates from node to node:

qIE
∆ij =


τj − τj−1, 1 < j ≤ i
τj , j = 1
0, otherwise

3 Minimize the spectral radius
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Design Diagonal Preconditioners
Robert in “Parallelizing spectral deferred corrections across the method” (2018)

1 Diagonal elements of the full quadrature matrix
2 Diagonal implicit Euler
3 Minimize the spectral radius

Implemented as “MIN” in pySDC.
Dahlquist equation: ut = λu (linear ODE)
SDC iteration matrix:

K = λ∆tQ∆(I − λ∆tQ∆)−1
(
Q−1∆ Q − I

)
→ ~uk+1 = K~uk

Stiff limit:
|λ∆t| → ∞: K → I − Q−1∆ Q := K∞

independent of λ
Minimize spectral radius ρ (K∞) by choice of diagonal Q∆ using scipy
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Design Diagonal Preconditioners
Robert in “Parallelizing spectral deferred corrections across the method” (2018)

For small parameters i.e. non-stiff
problems, all approaches work as
well as popular LU and IE
preconditioners
For stiff problems, only MIN works
sometimes
Same iteration count means lower
execution time because of
parallelism
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(a) Heat equation
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(b) Advection
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(c) Van der Pol
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(d) Non-linear diffusion
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Find New Diagonal Preconditioners for SDC
Brought to you by Ruth and the AI gang

Go from minimizing ρ(K∞) to minimizing range of ρ(Kλ)

Optimize preconditioner for Dahlquist problem with specific λ
Precompute a range of preconditioners for various λ
Use FFT for space-discretization to obtain a system of Dahlquist problems1

Solve each Dahlquist problem with its optimal preconditioner
Option: Use reinforcement learning

1Derivatives are multiplications in Fourier space
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Find New Diagonal Preconditioners for SDC with AI
Ruth and the AI gang

Example:
Schrödinger equation: ut = (∆u − 6u|u|2)i on [0,2π]3, space-parallel LU-based SDC vs. parallel SDC

P3 P6 P12 P24
0.4

0.6

1

1.6

2.5

total number of cores
ru
nt
im

e
(s
ec
.)

RL
Opt
LU

Member of the Helmholtz Association November 1, 2022 Slide 14



Generate Diagonal Preconditioners Using Adaptivity

Optimization problem:
Adaptivity controls the step size
Solve a reference problem over fixed interval in
time
Count iterations and minimize with diagonal
elements as input

Q∆ does not need to be diagonal!
In pySDC: First column of Q∆ corresponds to
initial conditions
Initial conditions are known on all ranks
Can do parallel midpoint method for instance 16.2
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