001     912037
005     20230713203925.0
024 7 _ |a 10.1038/s42003-022-04244-5
|2 doi
024 7 _ |a 2128/32848
|2 Handle
024 7 _ |a 36435870
|2 pmid
024 7 _ |a WOS:000889147500005
|2 WOS
024 7 _ |a 10.34734/FZJ-2022-05267
|2 datacite_doi
037 _ _ |a FZJ-2022-05267
082 _ _ |a 570
100 1 _ |a Nicolaisen-Sobesky, Eliana
|0 P:(DE-Juel1)180537
|b 0
|e Corresponding author
245 _ _ |a A cross-cohort replicable and heritable latent dimension linking behaviour to multi-featured brain structure
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689230168_6515
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Identifying associations between interindividual variability in brain structure and behaviour requires large cohorts, multivariate methods, out-of-sample validation and, ideally, out-of-cohort replication. Moreover, the influence of nature vs nurture on brain-behaviour associations should be analysed. We analysed associations between brain structure (grey matter volume, cortical thickness, and surface area) and behaviour (spanning cognition, emotion, and alertness) using regularized canonical correlation analysis and a machine learning framework that tests the generalisability and stability of such associations. The replicability of brain-behaviour associations was assessed in two large, independent cohorts. The load of genetic factors on these associations was analysed with heritability and genetic correlation. We found one heritable and replicable latent dimension linking cognitive-control/executive-functions and positive affect to brain structural variability in areas typically associated with higher cognitive functions, and with areas typically associated with sensorimotor functions. These results revealed a major axis of interindividual behavioural variability linking to a whole-brain structural pattern.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mihalik, Agoston
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kharabian-Masouleh, Shahrzad
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ferreira, Fabio S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 4
700 1 _ |a Schwender, Holger
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Maleki Balajoo, Somayeh
|0 P:(DE-Juel1)178767
|b 6
700 1 _ |a Valk, Sofie L.
|0 P:(DE-Juel1)173843
|b 7
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 8
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mourao-Miranda, Janaina
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 11
773 _ _ |a 10.1038/s42003-022-04244-5
|g Vol. 5, no. 1, p. 1297
|0 PERI:(DE-600)2919698-X
|n 1
|p 1297
|t Communications biology
|v 5
|y 2022
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/912037/files/1200190759_SN-2022-00734-B_Invoice_Gold%20OA%20Springer.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/912037/files/_paper_draft_v25.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/912037/files/s42003-022-04244-5.pdf
909 C O |o oai:juser.fz-juelich.de:912037
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180537
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)178767
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)178767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)173843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)173843
910 1 _ |a Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)173843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)161225
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-Juel1)161225
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-06-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:52:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-06-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-06-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:52:02Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-06-15
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-06-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21