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Abstract 27 

Identifying associations between interindividual variability in brain structure and behaviour 28 

requires large cohorts, multivariate methods, out-of-sample validation and, ideally, out-of-29 

cohort replication. Moreover, the influence of nature vs nurture on brain-behaviour associations 30 

should be analysed. We analysed associations between brain structure (grey matter volume, 31 

cortical thickness, and surface area) and behaviour (spanning cognition, emotion, and alertness) 32 

using regularized canonical correlation analysis and a machine learning framework that tests 33 

the generalisability and stability of such associations. The replicability of brain-behaviour 34 

associations was assessed in two large, independent cohorts. The load of genetic factors on 35 

these associations was analysed with heritability and genetic correlation. We found one 36 

heritable and replicable latent dimension linking cognitive-control/executive-functions and 37 

positive affect to brain structural variability in areas typically associated with higher cognitive 38 

functions, and with areas typically associated with sensorimotor functions. These results 39 

revealed a major axis of interindividual behavioural variability linking to a whole-brain 40 

structural pattern. 41 
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Introduction 42 

The association between human behaviour and brain structure is poorly understood. One 43 

important factor affecting progress in this field is the low replicability of studies linking 44 

neuroimaging with behaviour1. For instance, despite associations between behaviour and brain 45 

structure being often reported in the literature, the likelihood of finding such associations in an 46 

exploratory approach, and/or replicating previously reported associations in a confirmatory 47 

approach, is actually extremely low2,3. The replicability of such studies could be improved by 48 

using big sample sizes1, out-of-sample (within-cohort) validation4, as well as cross-cohort 49 

replicability assessments5. Another factor challenging our understanding of brain-behaviour 50 

associations is the multivariate nature of these relationships5. In particular, there is not a one-51 

to-one mapping between psychological constructs and brain regions6. This calls for the use of 52 

exploratory multivariate methods to discover meaningful patterns of brain-behaviour 53 

covariation5. 54 

Canonical Correlation Analysis (CCA), or the closely related Partial Least Squares (PLS), are 55 

multivariate data-driven methods that can be used to discover associative effects between brain 56 

and behaviour (i.e., latent dimensions of brain-behaviour covariation)4,7. CCA/PLS search for 57 

a latent space that captures the underlying relationship between brain and behaviour8. 58 

Specifically, these exploratory methods find a linear combination of brain variables and a linear 59 

combination of behavioural variables with maximal correlation (CCA) or covariation (PLS)4. 60 

The latent dimensions yielded by CCA/PLS can be interpreted as axes that maximally explain 61 

interindividual variability in the association between brain and behaviour.  62 

Some studies have used CCA/PLS to find brain-behaviour associations in young healthy adults, 63 

using the sample of the Human Connectome Project-Young Adult (HCP-YA). These studies 64 

reported a positive-negative mode of behaviour linked to resting state functional connectivity 65 
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(RSFC)9, to working memory network activation and connectivity10, and to cortical thickness 66 

(CT)11. Interestingly, these studies indicate that the association of behaviour with both, CT and 67 

RSFC, follows a similar pattern. This pattern is characterized by functional and structural 68 

differentiations between high and low regions of the cortical hierarchy9,11. 69 

These previous studies analysing brain-behaviour latent dimensions in young healthy adults 70 

have linked brain features to very diverse exposome and behavioural aspects, such as family 71 

psychiatric and neurologic history, vision correction, substance use, psychiatry and life 72 

function, personality, cognition, emotion, alertness, motor performance and sensory 73 

perception9,11. Although this is an interesting approach to study very broad associations between 74 

phenotypical features and brain features from an epidemiological standpoint, a specific focus 75 

on behavioural features such as alertness, cognition, and emotion, is required to better 76 

understand brain-behaviour relationships focused on psychological functioning. 77 

In addition, these findings suggest that brain structure, specifically CT, contributes to a positive-78 

negative mode of human neurocognitive phenotype. However, only one brain structural feature, 79 

CT, has been related to this latent dimension. To provide a more comprehensive understanding 80 

of the brain structural features of the brain-behaviour latent dimensions, surface area (SA) and 81 

grey matter volume (GMV) should also be analysed.  82 

GMV and SA can provide complementary information to CT, since both have been reported to 83 

be poorly correlated with CT12. It is worth noting that even though some authors have reported 84 

GMV to be closely related to SA, and hence have suggested to prefer CT and SA over GMV12, 85 

other authors still argue for the inclusion of the three brain structural markers in studies of brain-86 

behaviour associations13,14. In fact, some studies that included SA and GMV have found 87 

associations between behaviour and one structural marker but not the other13. Since GMV is 88 

influenced by various biological factors of the brain structure, such as curvature or grey/white 89 
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matter hyperintensities15, the inclusion of GMV in brain-behaviour studies provides a multi-90 

determined measure that can capture structural variability not reflected by CT and SA alone. 91 

Furthermore, GMV estimations allow the investigation of subcortical structures, which are 92 

typically ignored in studies focusing on surface-based techniques. Hence, in this study we 93 

focused on CT, GMV and SA to get a comprehensive understanding of the brain structural 94 

variability associated to behaviour. 95 

It is worth noting that a study on the HCP-YA cohort linked several brain structural features to 96 

a positive-negative behavioural profile16. However, the methods used in this study first integrate 97 

the brain structural variables to derive brain structural components, which are only later 98 

correlated to behaviour. To uncover associations driven by both, brain and behaviour, latent 99 

dimensions should be investigated using methods that integrate behaviour with several brain 100 

structural features in a single model. One of the advantages of CCA/PLS is that several brain 101 

and behavioural variables are integrated into a single model, and hence the latent dimensions 102 

are driven by variability in both sets of variables4. 103 

However, CCA/PLS analyses also have limitations. For instance,  they are prone to overfitting 104 

and hence yield unstable latent dimensions when the number of samples is small (relative to 105 

the number of features)4,7,17. This compromises the replicability, generalizability, and 106 

interpretability of the latent dimensions yielded with such methods4,17. Of note, some attempts 107 

to replicate previous studies linking brain to behaviour with CCA have failed18.  108 

Importantly, a recently developed machine learning framework implements steps to reduce 109 

overfitting and improve generalisability and stability of CCA/PLS methods4,8,19. This 110 

framework uses multiple test and holdout sets of the dataset to assess the stability and 111 

generalisability of the latent dimensions. It is worth noting that this framework optimises the 112 

hyperparameters of the model independently for each latent dimension sought in the data. 113 
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Moreover, by using a regularized version of CCA (RCCA) both, the complexity of the model 114 

and the chance of overfitting can be reduced4.  115 

Another challenging aspect that remains to be studied regarding brain-behaviour latent 116 

dimensions is the underlying cause of their variability in the population. One first step towards 117 

assessing the cause of a phenotype is to evaluate its heritability and genetic correlation. 118 

Heritability assessment consists of estimating the partition of the variability of a particular 119 

phenotype into its genetic and environmental components. In other words, heritability (in the 120 

narrow sense, h2) allows to disentangle the overall influence of additive genetic factors from 121 

the overall influence of environmental factors on a specific phenotype20,21. Heritability is a 122 

population parameter and is computed as the ratio between the additive genetic variation and 123 

the phenotypic variation. Hence, this approach allows the study of the relationship between 124 

genotype and phenotype, and it can be interpreted as the percentage of the variation of a 125 

phenotype in a population that can be attributed to genetic factors22.  126 

A related concept is the genetic correlation (ρg) between two traits. The genetic correlation is 127 

an estimation of the amount of additive genetic influences that are shared between two 128 

phenotypic traits (i.e., pleiotropy)23–25. The genetic correlation is useful to identify phenotypes 129 

that may have interconnected underlying genetic factors26. Heritability and genetic correlation 130 

represent a first exploration that could guide further research into more detailed aspects of the 131 

genetic and environmental factors influencing phenotypes20,21,25,27,28. Thus, in a broader 132 

perspective these analyses could ultimately help to disentangle the mechanistic underpinnings 133 

of phenotypes such as brain-behaviour associations. 134 

The heritability of several univariate brain structural features has been reported, including local 135 

CT12,25,29, local grey matter volume (GMV) and local surface area (SA)12. Also, the heritability 136 

of univariate behavioural phenotypes has been reported, including intelligence, depression, 137 
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cognitive features, social interaction and personality traits20,29,30. Interestingly, bivariate 138 

associations between brain structure and behaviour have been shown to be heritable31 and to 139 

have significant genetic correlations25,29,31. However, the heritability and genetic correlation of 140 

latent dimensions of brain-behaviour associations is still unknown. Examining the heritability 141 

of such dimensional phenotypes in healthy adults would help to better understand the influence 142 

of overall genetic factors on broad, dimensional, and meaningful brain-behaviour associations. 143 

In this study, we searched for robust multivariate associations linking behaviour (spanning 144 

alertness, cognition, and emotion) to the structure of the brain grey matter (parcel-wise 145 

estimations of CT, SA and GMV). In addition, we studied the heritability and genetic 146 

correlation of such associations. We used two large and openly available datasets of the Human 147 

Connectome Project (HCP): the HCP Young Adult (HCP-YA) and the HCP in aging (HCP-A). 148 

Our findings show one replicable and heritable latent dimension linking interindividual 149 

variability in behaviour to interindividual variability in CT, SA and GMV.  150 

 151 
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Results 152 

Latent dimensions in the HCP-YA and HCP-A cohorts 153 

We used 32 behavioural variables spanning alertness, cognition, and emotion (Supplementary 154 

table 1). These variables were chosen for covering phenotypes of interest in our study, for being 155 

available in both cohorts (HCP-YA and HCP-A) and for not having missing data. The set of 156 

brain structural features included parcel-wise measures of GMV (239 cortical, subcortical and 157 

cerebellar parcels), CT, and SA measures (both for 200 cortical parcels). Brain features were 158 

corrected by brain size using internal data normalisation. This means that GMV, CT and SA 159 

features of a given participant were divided, respectively, by TIV, overall CT and overall SA 160 

of that participant. Accordingly, these features reflect the relative structural profile of a parcel 161 

(as opposed to the absolute structural estimate). Age and gender were regressed out both from 162 

the brain and behavioural features avoiding train-test leakage. 163 

To identify the brain-behaviour latent dimensions, we used RCCA (Figure 1) embedded in a 164 

machine learning framework that uses multiple test and holdout sets of the data to assess the 165 

stability and generalizability of the latent dimensions4 (Supplementary figure 1). In this study, 166 

we used 5 outer data splits, each with 5 inner splits. The inner splits were used for model 167 

selection and the outer splits for model evaluation. This means that, in each cohort, 5 canonical 168 

correlations (Pearson’s correlations) were yielded, each with one p-value (corresponding to the 169 

5 outer splits). For this reason, the values provided below correspond to the range between these 170 

5 outer splits. 171 

First, we performed one global analysis in each cohort, linking the 32 behavioural variables to 172 

parcel-wise estimations of the three brain structural features (GMV, CT and SA). The RCCA 173 

model in the HCP-YA cohort yielded one significant latent dimension (rrange=0.25-0.41, 174 

p=0.005-0.02) (Supplementary table 2). The RCCA model in the HCP-A cohort yielded two 175 
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significant latent dimensions (first latent dimension: rrange=0.29-0.61, p=0.005-0.005; second 176 

latent dimension: rrange=0.04-0.33, p=0.005-0.999) (Supplementary table 3). In the next section, 177 

we evaluated the cross-cohort replicability of these latent dimensions. 178 

Stability and cross-cohort replicability of the latent dimensions 179 

To statistically evaluate the replicability of the latent dimensions found, their brain and 180 

behavioural loadings (averaged over the 5 outer splits) were compared across cohorts (see 181 

Figure 1 for definition of loadings). The cross-cohort similarity of behavioural loadings was 182 

evaluated with Pearson’s correlation, while the cross-cohort similarity of CT and SA loadings 183 

was evaluated with spin test to account for spatial dependencies of the brain data32. 184 

We found that only the first latent dimension in each cohort was replicable on the other cohort. 185 

This latent dimension showed significant cross-cohort correlations at the behavioural (r=0.72, 186 

p<0.001), CT (r=0.80, p<0.001) and SA (r=0.57, p<0.001) loadings. The loadings of the second 187 

latent dimension in the HCP-A were correlated with the loadings of the first latent dimension 188 

in HCP-YA only on their CT loadings (r=-0.31, p<0.032), but not on their SA and behavioural 189 

loadings (p>0.99).  190 

Since our results indicated that only the first latent dimension in each cohort was replicated on 191 

the other cohort, we here assumed that only that dimension represents a general axis of 192 

interindividual variability likely independent of the specific population group evaluated. 193 

Accordingly, only that latent dimension is described in detail on the following sections and 194 

further investigated in the subsequent analyses. Of note, according to our supplementary 195 

analyses, our results appear to not be influenced by potential spurious effects of site in the HCP-196 

A cohort (see supplementary methods and supplementary results subsections “Socio-economic 197 

status and site effects in the latent dimension”). 198 

 199 
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Behavioural features associated with the replicable latent dimension 200 

As noted above, we found one significant and cross-cohort replicable latent dimension linking 201 

behaviour to brain structure (Figure 2, Supplementary figures 3-6). On the behavioural side, the 202 

positive pole of this latent dimension captures variability of good cognitive functions and 203 

positive affect (Figure 3, Supplementary figures 7-8). Specifically, the latent dimension is 204 

positively correlated in both cohorts with better language abilities (vocabulary comprehension 205 

and reading decoding), self-regulation, episodic memory, working memory, executive 206 

functions (cognitive flexibility and inhibition), processing speed and emotion recognition.  207 

Although the latent dimension is replicated across cohorts, some variables flip the sign of their 208 

loadings across cohorts. These variables include meaning/purpose and friendship, which flip 209 

from a positive association with the latent dimension in HCP-YA to negative association in 210 

HCP-A. Moreover, physical aggression, hostility/cynicism, rejection, sleep disturbance, 211 

hostility, sadness, loneliness, anger (irritability-frustration), fear, use of sleep medication and 212 

daytime dysfunction flip from a negative association with the latent dimension in HCP-YA to 213 

a positive association in HCP-A. These flipped behavioural variables have a very low 214 

correlation with the latent dimension in at least one of the cohorts (below 0.2) and some of them 215 

have error bars crossing zero. This indicates that the association of these variables with the 216 

latent dimension is very unstable, even within cohorts. Accordingly, we can assume that such 217 

measures do not capture a clear behavioural aspect with the same validity across cohorts, or 218 

that such variables are not strongly valid as psychometric measurements and/or may not have 219 

clear associations with brain structure. 220 

Brain features associated with the replicable latent dimension 221 

On the brain side, the CT loadings showed a hierarchical differentiation of the cortex (Figure 4 222 

a,d, Supplementary figures 9-11). Specifically, higher associative areas were negatively 223 
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associated with the latent dimension and sensorimotor areas were positively associated with the 224 

latent dimension. The strongest CT positive loadings in both cohorts were found on medial and 225 

superior temporal gyri, middle temporal gyri, right inferior temporal gyrus, fusiform gyri, 226 

parahippocampal gyri, insula, right rolandic operculum, superior and middle occipital gyri, 227 

right inferior occipital gyrus, lingual gyri, calcarine gyri, cuneus, precuneus, postcentral gyri, 228 

left inferior parietal lobule and left pars orbitalis. The strongest CT negative loadings in both 229 

cohorts were located on inferior temporal gyri, left superior orbital gyrus, precuneus, superior 230 

parietal lobule, precentral gyri, mid cingulate cortex, anterior cingulate cortex, posterior medial 231 

frontal, middle and superior frontal gyri, superior medial gyri, pars triangularis, pars 232 

opercularis, mid orbital gyri and middle orbital gyri. This can be interpreted as better cognitive 233 

functions and positive affect being associated with lower CT in transmodal associative regions 234 

and with higher CT in sensorimotor regions. 235 

The SA loadings on both cohorts were found to be positive in the inferior and middle temporal 236 

gyri, fusiform gyri, precuneus, cuneus, superior parietal lobule, anterior cingulate cortex, 237 

middle and superior frontal gyri, pars opercularis and right superior medial gyrus (Figure 4 b,e, 238 

Supplementary figures 12-13). Negative SA loadings in both cohorts were located on superior 239 

and middle temporal gyri, fusiform gyri, insula, left parahippocampal gyrus, right rolandic 240 

operculum, calcarine gyri, left lingual gyrus, paracentral lobule, right middle frontal gyrus, right 241 

pars triangularis, left pars orbitalis and rectal gyri. 242 

Cortical GMV loadings showed a similar pattern as SA loadings (Figure 4 c,f, Supplementary 243 

figures 14-15). Positive cortical GMV loadings on both cohorts were found in middle and 244 

inferior temporal gyri, medial temporal pole, fusiform gyri, postcentral gyri, precentral gyri, 245 

superior parietal lobule and right superior medial gyrus. Negative loadings for GMV in the 246 

cortex on both cohorts were located on left parahippocampal gyrus and insula. Negative GMV 247 

loadings in subcortical and limbic structures in both cohorts were found in hippocampus 248 
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(including dentate gyrus and CA3), caudate nucleus, putamen, and pallidum. Cerebellar 249 

loadings in both cohorts were negative, being located in regions of the cerebellum that are 250 

functionally connected with the visual and somatomotor networks. 251 

Anatomical resolution 252 

We tested if the latent dimension was still yielded when using higher and lower levels of 253 

anatomical resolution across cortical, limbic, and cerebellar structures. This latent dimension 254 

was stable when using different levels of anatomical resolution (Supplementary tables 4-5). 255 

Modular latent dimensions 256 

We performed three modular RCCAs in each cohort to test if the same latent dimension was 257 

captured when including only one structural feature in the model (Supplementary methods 258 

“Modular analyses”). In each cohort, we performed three single-feature (modular) analyses 259 

linking the same set of 32 behavioural features with either a) only GMV features, b) only CT 260 

features or c) only SA features. 261 

Interestingly, the replicable latent dimension described above was captured when including 262 

only one structural feature at a time (modular analyses) (Supplementary results, Supplementary 263 

table 6 and Supplementary figures 16-21). This indicates that the same behavioural mode is 264 

associated with different brain structural features. 265 

Comparison of brain loadings with gradients of functional connectivity 266 

In order to interpret the brain loadings of the latent dimension found, we compared them with 267 

the principal gradient of functional connectivity over the brain cortex33 using spin test32. The 268 

CT loadings of the global latent dimensions in both cohorts were significantly correlated with 269 

the first gradient of functional connectivity (HCP-YA: r=-0.46, p<0.001; HCP-A: r=-0.32, 270 

p=0.004). The SA loadings of the global latent dimensions were significantly correlated with 271 
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the first gradient of functional connectivity only for the HCP-A cohort (r=0.24, p=0.03) but not 272 

for the HCP-YA cohort (r=0.13, p=0.10). 273 

Heritability 274 

In order to characterize the influence of overall genetic effects on the latent dimension, we 275 

examined the heritability (h2) of their brain and behavioural scores in the HCP-YA cohort (see 276 

Figure 1 for definition of scores). The heritability analyses showed that both brain scores 277 

(h2=0.85; p<0.001) and behavioural scores (h2=0.72; p<0.001) were heritable.  278 

Moreover, we tested if the brain and behavioural scores of the latent dimension were influenced 279 

by overlapping mechanisms, by computing their genetic (ρg) and environmental (ρe) 280 

correlations in the HCP-YA cohort. We observed a significant genetic correlation between the 281 

brain and behavioural scores (ρg=0.66; p<0.001). Their environmental correlation was also 282 

significant (ρe=0.17; p=0.021). These results indicate that the association between behaviour 283 

and multi-featured brain structure found in the latent dimension is driven, at least in part, by 284 

shared genetic and environmental effects.  285 

The heritability of brain (h2=0.82; p<0.001) and behavioural scores (h2=0.69; p<0.001), as well 286 

as the genetic correlation (ρg=0.61; p<0.001) and the environmental correlation (ρe=0.16; 287 

p=0.025) remained significant after removing variance of TIV, age, age2, gender, age*gender, 288 

and age2*gender. 289 
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Discussion 290 

This work provides robust findings on the association between behaviour and multi-featured 291 

brain structure. We found one latent dimension that can be understood as a single axis in which 292 

participants are distributed based on their covariance between brain structure and behaviour. 293 

Our study confirms previous findings of a positive-negative behavioural mode in the HCP-YA 294 

cohort9,11. Importantly, we expand these findings by providing a more comprehensive view on 295 

the brain structural features of the latent dimension by including GMV and SA, as well as a 296 

behavioural profile focused on cognition, alertness, and emotion. In comparison with previous 297 

studies using CCA/PLS to link brain and behaviour, we reduce the chance of overfitting by 298 

using RCCA embedded in a recently proposed machine learning framework that tests the 299 

generalisability and stability of the findings8,19. Crucially, we expand this latent dimension to a 300 

wider age range and replicate it in an independent cohort, the HCP-A. In addition, we provide 301 

estimations of the influence of overall genetic and environmental factors on it. 302 

The behavioural variability captured by the latent dimension is characterized by good-cognitive 303 

control/executive-functions and positive affect. The behavioural profile of this latent dimension 304 

is in line with the previously reported positive-negative latent dimension linked to RSFC9,11, 305 

working memory network activation and connectivity10 and CT11 in the HCP-YA cohort. A 306 

similar positive-negative latent dimension associated with GMV was also found in 307 

adolescents34. By using a carefully selected set of behavioural variables and comprehensive 308 

brain structural data, our results provide a characterization of this latent dimension focused on 309 

cognition, alertness and emotion and demonstrate their association with brain structure.  310 

We found that cognitive-control/executive-functions and positive affect are associated with 311 

relatively thicker cortex in sensorimotor regions and with relatively thinner cortex in associative 312 
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areas. This brain pattern is in line with the previous study in the HCP-YA reporting a positive-313 

negative mode associated with CT11.  314 

The association of cognitive-control/executive-functions with thinner CT in transmodal 315 

associative areas has been reported before in the HCP-YA cohort35,36, even when controlling 316 

for brain size36. This finding does not align with the “bigger is better” hypothesis, which 317 

suggests that better brain functions and behavioural performance are associated with bigger 318 

brain areas37, and vice versa. For instance, in adults, reductions in CT in associative areas have 319 

been associated with neurodegeneration in clinical samples38,39. Alternatively, this association 320 

has been related with healthy maturation of the brain cortex during adolescence40 and during 321 

lifespan41. However, our study finds this negative association in a sample of healthy adults and 322 

after removing variance of age. Altogether, these findings suggest that the direction of the 323 

association between CT and behaviour might not indicate healthy or unhealthy factors per se. 324 

Future studies should further explore the neurobiological underpinnings of the negative 325 

association between CT in associative areas and cognition. 326 

Interestingly, our study shows a positive association between cognition and emotion with CT 327 

variability in brain areas typically associated with sensorimotor functions. This can be 328 

interpreted as better cognition and positive emotions being associated with relatively ticker 329 

cortex in sensorimotor regions. Since these areas are typically associated mainly with 330 

sensorimotor functions, they are often excluded from analyses in studies linking brain to 331 

cognition and emotion. Hence, our results call for the exploration of sensorimotor areas in 332 

studies focused on brain associations with cognition and emotion.  333 

Our study also found that the CT pattern associated with the latent dimension is consistent with 334 

the first gradient of functional connectivity organisation in the brain cortex33. This gradient 335 

represents an axis of variability that ranges from the connectivity pattern of the default mode 336 
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network to the connectivity pattern of sensorimotor brain cortices33. Previous studies have also 337 

related the pattern of CT covariation in the brain cortex with the same gradient of functional 338 

organization42. Our study strengthens these findings by showing that CT variability in the 339 

hierarchical differentiation of the cortex is maximally associated with behaviour. Hence, the 340 

hierarchical differentiation of the cortex in terms of CT would be an important feature of brain 341 

organisation relevant for behaviour. 342 

The association of the latent dimension with SA and cortical GMV is similar. Relationships 343 

between SA and GMV have been shown before. For instance, it has been reported that GMV 344 

and SA are phenotypically, genetically and environmentally correlated, but poorly correlated 345 

with CT12. Our results extend these findings by showing that the association between GMV and 346 

SA also covaries with behavioural phenotype.  347 

Interestingly, the pattern of SA and GMV shown in our study is similar to the pattern of cortical 348 

expansion during ontogeny and phylogeny43. Specifically, the latent dimension is associated 349 

with relatively higher SA and relatively higher GMV in areas of high expansion, and with 350 

relatively lower SA and relatively lower GMV in areas of low expansion. Of note, cortical areas 351 

that show high expansion during evolution and human development have been associated with 352 

higher cognitive functions, and areas that show low expansion are associated with sensorimotor 353 

functions43. This suggests that our results capture a dimension of brain structure that has 354 

evolved and develops in coordination with the high cognitive functions that characterise 355 

humans. 356 

Loadings in limbic structures and basal ganglia indicated negative associations between 357 

cognitive-control/executive-functions and affect and relative GMV in caudate nucleus, 358 

putamen, pallidum, insula, hippocampi and left parahippocampal gyrus. Of note, negative 359 

associations between volume in structures such as the hippocampi have been associated with 360 
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psychopathology such as schizophrenia39, depression38, Alzheimer’s disease and mild cognitive 361 

impairment8. The negative association between GMV in these structures and positive or 362 

negative behavioural features might be due to non-linear effects (for instance inverted U shape 363 

effects). 364 

We found that cognitive-control/executive-functions and positive affect are associated with 365 

relatively lower GMV in the cerebellum. In the last decades, several studies highlighted the 366 

association of the cerebellum with higher cognitive functions44,45, particularly in posterior 367 

cerebellar regions. For instance, the posterior cerebellar lobules, such as Crus 1 and Crus 2 have 368 

been reported to map46 (for revisions see45,47,48) and to have resting state functional 369 

connectivity46 (for a review see48) with cortical associative areas.  370 

Our results show that the latent dimension is associated with cerebellar regions functionally 371 

connected to the cortical visual and somatomotor cerebral networks. This suggests that not only 372 

cerebellar higher regions, but also regions typically associated with lower functions (for reviews 373 

see47,48; for a meta-analysis see49), contribute to higher cognitive and emotional/affective 374 

functions. Interestingly, this is in line with the pattern of covariation between CT and the latent 375 

dimension, linking sensorimotor cortices with cognitive-control/executive-functions and 376 

positive affect. Of note, a previous multivariate whole-brain study in functional connectivity 377 

highlighted the role of sensorimotor cortices in mental disorders50. Altogether, these findings 378 

suggest a contribution of sensorimotor cortical and cerebellar areas to cognitive and 379 

affective/emotional functions, and hence suggest their relevance in mental health. 380 

The association of cognitive-control/executive-functions and positive affect with relatively 381 

lower GMV in the cerebellum is in line with phylogenetic studies reporting that the motor 382 

regions occupy a smaller fraction of the cerebellum in humans compared to chimpanzees51. 383 

However, decreases in cerebellar volume have often been associated with negative factors such 384 
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as healthy aging across the lifespan52 or pathologies such as Alzheimer’s disease53 or 385 

schizophrenia39. Altogether, these findings suggest a complex relationship between cerebellar 386 

GMV and behaviour.  387 

The quantitative genetic analyses indicated that the brain and behavioural scores of the latent 388 

dimension are heritable and genetically correlated. This suggests that variability in the 389 

association between brain and behavioural features in the population is influenced by variability 390 

in genetics in the population. In other words, genetics is an important contributor to the 391 

interindividual variability of the latent dimension. In addition, the brain and behavioural 392 

variables driving this latent dimension are influenced by overlapping genetic mechanisms. It is 393 

important to note that a high heritability should not be interpreted as an indicator of low/difficult 394 

malleability of the phenotype, or that the phenotype is determined by genetics. Since heritability 395 

is computed as a ratio, a change in the environment can influence the phenotype. We would 396 

also like to highlight that heritability is a population parameter, and as such inferences about 397 

individuals cannot be made. 398 

Previous studies have shown that CT, SA and subcortical volumes are heritable (in the HCP-399 

YA sample31 and in a different sample12). Moreover, phenotypic correlations between cognition 400 

and both, CT and SA, have been found to be mirrored by genetic correlations31. The significant 401 

genetic correlation that we found between brain and behavioural scores supports our findings 402 

showing that the association between brain structure and behavioural features has likely an 403 

important genetic background. However, it should be noted that the relationship may not be 404 

direct, and several mediating factors may explain this relationship. Furthermore, the statistical 405 

properties of the synthetic brain and behavioural scores used in this study may have artificially 406 

inflated the heritability estimates. Thus, future studies are needed to reinforce these initial 407 

findings. 408 
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Although CCA/PLS methods have several advantages, they also have some limitations. For 409 

instance, these methods can only find linear relationships4,19, and the latent dimensions found 410 

are limited by the variables included in the analyses. The mixed type of variables (e.g., 411 

continuous, ordinal or categorical data) and their different distributions can also present 412 

difficulties in the modelling approach54. 413 

Future studies should analyse latent dimensions linking behaviour to brain structure including 414 

other brain structural features, such as gyrification or white matter markers derived from 415 

diffusion MRI. Multi-view CCA/PLS models could shed light on more complex relationships 416 

between the different brain features and behavioural variables34. 417 

In conclusion, our results indicate that the maximal association between brain structure and 418 

behaviour is characterized, on the behavioural side, by a spectrum of variability in good 419 

cognitive-control/executive-functions and positive affect. The CT features associated with this 420 

latent dimension show a hierarchical differentiation of the cortex, in line with the first gradient 421 

of variability in RSFC. The SA and cortical GMV features are similarly associated with the 422 

latent dimension, differentiating regions of low and high cortical expansion during ontogeny 423 

and phylogeny. Of note, our results show covariation between both, cognition and 424 

emotion/affect, and low-level regions of the brain, often associated with sensorimotor functions 425 

and hence often excluded from studies focusing on cognitive or affective/emotional functions. 426 

This explorative approach hence reveals robust findings as well as yields some hypothesis that 427 

should be evaluated in a hypothesis-driven design. Finally, the quantitative genetic analyses 428 

indicate that this association between brain structure and cognitive-control/executive-functions 429 

and positive affect is influenced by overlapping genetic mechanisms. 430 

 431 
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Methods 432 

Participants 433 

We used two publicly available and large-scale datasets of the Human Connectome Project 434 

(HCP):  the HCP Young Adult (HCP-YA, S1200 release55) and the HCP in Aging (HCP-A, 2.0 435 

release56). The HCP-YA cohort is the biggest dataset available at the moment for a twin-based 436 

heritability analysis of brain-behaviour multivariate associations in healthy young adults. The 437 

assessment of replicability of multivariate analyses involving behaviour has the limitation that 438 

the selected cohorts should have the same set of behavioural measurements. The HCP-A is a 439 

suitable dataset to assess generalisability of findings on the HCP-YA sample, because its 440 

behavioural assessments and neuroimaging protocols were selected to maximise similarity and 441 

harmonization with the HCP-YA cohort, while optimising data quality in a different age span57.. 442 

For instance, several behavioural measures are shared between both datasets, which is 443 

necessary to compare brain-behaviour latent dimensions yielded across cohorts. In addition, the 444 

use of the HCP-A cohort allows for the extension of the results to a broader age range. 445 

The HCP-YA cohort comprises neuroimaging and behavioural data of 1206 participants 446 

between 22-37 years old. Participants are healthy individuals born in Missouri to families that 447 

include twins55. The sample consists of 457 families, including 292 monozygotic twins, 323 448 

dizygotic twins and 586 not-twins. In this cohort, each family includes between 3 to 6 449 

individuals and one pair of twins55. We excluded 93 participants for not having available 450 

structural scans, 2 for errors during CAT processing and 66 for not having complete data, 451 

leading to a final sample of 1047 participants (560 females, mean age=28.78 years, SD 452 

age=3.67 years, age range=22-37 years). The final sample of the HCP-YA cohort included 94 453 

participants with ethnicity Hispanic/Latino, 940 with ethnicity Not Hispanic/Latino, and 13 454 
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with unknown or not reported ethnicity. With regard to race, the final sample included 2 455 

participants with race American Indian/Alaska Native, 62 with race Asian/Native 456 

Hawaiian/Other Pacific Is., 153 with race Black or African American, 785 with race White, 27 457 

with More than one race, and 18 with Unknown or not reported race. Regarding school 458 

attendance, 839 participants were not attending school at the moment of data collection and 208 459 

were attending school.  460 

The HCP-A cohort includes neuroimaging and behavioural data of 725 healthy adults between 461 

36 to 100 years old. We excluded 1 participant for technical problems, 5 participants for errors 462 

in the CAT processing (estimated untypical tissue peaks) and 118 for not having complete 463 

behavioural data. This leads to a final sample of 601 unrelated participants (353 females, mean 464 

age=58.5 years, SD age=14.9 years, age range=36-100 years). Participants of this sample 465 

included in this study were unrelated (did not pertain to the same families). The final sample of 466 

the HCP-A cohort included 65 participants with ethnicity Hispanic/Latino, 535 with ethnicity 467 

Not Hispanic/Latino, and 1 with unknown or not reported ethnicity. With regard to race, the 468 

final sample included 2 participants with race American Indian/Alaska Native, 47 with race 469 

Asian, 91 with race Black or African American, 422 with race White, 26 with More than one 470 

race, and 13 with Unknown or not reported race. Regarding school attendance, 534 participants 471 

were not attending school at the moment of data collection, 34 were attending school and 33 472 

had missing value for this information. 473 

Information about income and education for both samples can be found in supplementary figure 474 

S2. 475 

Behavioural data 476 
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Both cohorts include behavioural data acquired using questionnaires and tasks. We selected 477 

those behavioural variables focused on emotion and cognition that were present in both cohorts 478 

without missing values. The selected behavioural variables spanned sleep, episodic memory, 479 

executive functions, language, processing speed, self-regulation/impulsivity, working memory, 480 

emotion recognition, negative affect, psychological well-being, social relationships, and stress 481 

and self-efficacy (see supplementary table 1 for specific behavioural variables included). In 482 

both cohorts, the values for reaction time to emotion recognition were flipped (variable 483 

ER40_CRT). The evaluation of the role of socio-economic status on the latent dimensions can 484 

be found in the supplementary methods and results subsections “Socio-economic status and site 485 

effects in the latent dimension” as well as Supplementary figures 22-24. 486 

Neuroimaging data acquisition 487 

Neuroimaging data in the HCP-YA cohort were obtained using a customised 3T Magnetic 488 

Resonance Siemens Skyra “Connectom” scanner with a standard 32-channel Siemens receive 489 

head coil in a single site at Washington University in St. Louis, United States of America55,58. 490 

T1-weighted images were obtained using a 3D MPRAGE sequence (TR = 2400 ms; TE = 2.14 491 

ms; TI = 1000 ms; voxel size = 0.7 mm isotropic)55,58–60. 492 

In the HCP-A cohort, neuroimaging data were acquired on standard Siemens 3T Prisma 493 

scanners with Siemens 32-channel Prisma head coils at four sites in the United States of 494 

America: Washington University in St. Louis, University of California-Los Angeles, University 495 

of Minnesota and Massachusetts General Hospital57. Matched neuroimaging protocols were 496 

used across sites56. T1-weighted images were obtained using multi-echo MPRAGE sequences 497 

(TR/TI = 2500/1000; TE = 1.8/3.6/5.4/7.2 ms; voxel size = 0.8 mm isotropic)57. 498 

Structural preprocessing 499 
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The T1-w anatomical images of both cohorts were processed with the Computational Anatomy 500 

Toolbox version 12.561. After normalization and segmentation, the grey matter segments were 501 

modulated for non-linear transformations and smoothed. Grey matter was parcellated using a 502 

combination of the Schaefer atlas for 200 cortical regions62, the Melbourne subcortex atlas for 503 

32 subcortical regions63 and the Buckner/Yeo atlas for 7 cerebellar regions46. Since the 504 

subcortical and cerebellar atlases overlap in some voxels with the cortical atlas, these voxels 505 

were set to zero (background) in the subcortical and cerebellar atlases. This was done in order 506 

to avoid artificial correlation between GMV regions due to that overlap. CT and SA were 507 

obtained from the HCP, estimated with FreeSurfer64 version 5.3.0-HCP in HCP-YA55,59,60 and 508 

with version 6.0 in HCP-A. CT and SA were parcellated using the Schaefer atlas for 200 509 

regions62. It should be noted that in CAT the GMV estimations are computed independently 510 

from CT and SA. Therefore, in our study, GMV appears complementary, rather than redundant, 511 

to CT and SA. The robustness of the results to different levels of anatomical resolution was 512 

tested (see section below about anatomical resolution). 513 

Regularized Canonical Correlation Analysis 514 

Canonical Correlation Analysis (CCA) is a multivariate method that finds linear relationships 515 

between two datasets65. This method can be used to discover latent dimensions of brain-516 

behaviour interindividual variability4,19. In this context, a latent dimension can be described as 517 

a set of behavioural variables that co-vary in a similar way with a set of brain variables. In this 518 

study, we used this method embedded in a machine learning framework (which is described in 519 

the next section). 520 

To analyse latent dimensions linking brain and behaviour, the inputs to the CCA model would 521 

be a brain matrix X and a behavioural matrix Y (Figure 1). CCA identifies brain weights (u) 522 

and behavioural weights (v), which describe linear combinations of the variables in X and in 523 
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Y, respectively4. These weights can be interpreted as a quantification of how much each 524 

variable contributes to the latent dimension4. This model selects the weights in order to 525 

maximise the canonical correlation, which corresponds to the correlation of the brain scores 526 

(Xu) with the behavioural scores (Yv)4,19. The scores can be interpreted as a quantification of 527 

how much the latent dimension is present in each participant. 528 

One limitation of the CCA is that it is prone to overfitting the data4,17. Interestingly, a 529 

regularised version of CCA (RCCA) reduces this drawback by adding L2-norm constraints to 530 

the weights, which are controlled by regularisation parameters (cx and cy) to the model4,19,66,67. 531 

We used RCCA to analyse latent dimensions linking interindividual variability in behaviour 532 

with interindividual variability in multi-featured brain structure (GMV, CT and SA). RCCA 533 

analyses were implemented independently in each cohort. In each cohort, we first performed a 534 

global RCCA analysis to detect latent dimensions including all the behavioural variables on the 535 

Y matrix, and the three structural features concatenated in the X matrix. On a second step, we 536 

wanted to test if the patterns of brain-behaviour associations obtained with this global analysis 537 

were affected when including only one brain structural feature (see subsection modular latent 538 

dimensions).  539 

In the global as well as the modular analyses, age and gender were regressed out from both, X 540 

and Y in a fashion avoiding leakage between the training and test sets (i.e., procedures for 541 

deconfounding the data were estimated on the training set and applied to the validation and 542 

holdout sets). In all the analyses brain data was normalised by brain size. The normalisation for 543 

brain size was performed participant-wise (dividing GMV features of a given participant by the 544 

corresponding TIV of the same participant, dividing CT feature of a given participant by overall 545 

CT of the same participant, and dividing SA features of a given participant by overall area of 546 

the same participant).  547 
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The RCCA models were trained and tested in a machine learning framework as described 548 

below, using MATLAB R2020b. The significance of the latent dimensions was assessed as 549 

described in the following section. When a significant latent dimension was found, its variance 550 

was removed from the data using deflation19. Following that, an additional latent dimension 551 

was sought. 552 

To interpret the significant latent dimensions found, we computed and visualized loadings 4. 553 

The brain loadings are obtained by correlating the original brain variables (X) with the brain 554 

scores (Xu). Similarly, the behavioural loadings are computed by correlating the behavioural 555 

original variables (Y) with the behavioural scores (Yv). The loadings indicate which brain and 556 

behavioural variables are more strongly associated with the latent dimension. 557 

Machine Learning Framework 558 

We used a recently proposed machine learning framework that uses multiple holdouts of the 559 

data8,19. In this framework, two consecutive splits of the data (i.e., outer split and inner split) 560 

are used for model selection and statistical evaluation, respectively (Supplementary figure 1). 561 

The outer split divides the overall data into optimisation set (80%) and a hold-out set (20%). 562 

The inner split divides the optimisation set into training set (80%) and testing set (20%). We 563 

used 5 outer splits and 5 inner splits, respecting the family structure of the HCP-YA dataset68. 564 

Several RCCA models, each with a different combination of regularisation parameters, are 565 

fitted on the training sets. Then the testing sets are projected onto the obtained weights, yielding 566 

test canonical correlations. In addition, the stability of RCCA models was assessed based on 567 

the similarity of model weights (measured as Pearson’s correlation) across the 5 inner splits. 568 

The combination of regularisation parameters yielding the highest test canonical correlation 569 

and stability19 is then selected and used to fit the whole optimisation set. Finally, the hold-out 570 
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set is projected onto the weights obtained in the optimisation set in order to test for the 571 

generalisability of the model.  572 

Statistical evaluation of the latent dimensions 573 

Statistical significance of the latent dimensions was tested using permutation tests with 1000 574 

iterations. On each iteration, the rows of the Y matrix were shuffled separately within the 575 

optimisation and hold-out sets, breaking the association between brain and behavioural data of 576 

each participant. Shuffling was performed respecting the family structure of the data68. The 577 

RCCA model was fitted on the permuted optimisation set using the best parameters (obtained 578 

from the original data). Next, the permuted hold-out set was projected onto these weights, and 579 

the canonical correlation was obtained. Finally, p-values were computed as the percentage of 580 

iterations where the canonical correlations obtained from the permuted data were higher than 581 

the original canonical correlation obtained from the original data. This process was repeated for 582 

the 5 outer splits of the data, obtaining 5 p-values. 583 

The omnibus hypothesis (Homni) was then evaluated8. The Homni is a null hypothesis of no effect 584 

on any of the splits. If then a spilt is significant (after Bonferroni correction for multiple 585 

comparisons), then we can reject this null hypothesis and conclude that there is a significant 586 

latent dimension. P-values in each outer split were corrected for multiple comparisons using 587 

the Bonferroni method over 5 comparisons (corresponding to the 5 outer splits). 588 

Cross-cohort replicability of the latent dimensions 589 

The replicability of the latent dimensions was tested by comparing the mean brain and 590 

behavioural loadings across cohorts. Loadings of each latent dimension in each cohort were 591 

averaged over the 5 outer splits. Behavioural loadings were compared across cohorts with 592 
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Pearson’s correlation. The CT and SA loadings were compared across cohorts using spin test, 593 

to account for their spatial dependencies32 as provided by BrainSpace toolbox69.  594 

The spin test assesses the significance of the similarity between two brain maps while 595 

accounting for the spatial dependency of the data and preserving the hemispheric symmetry. 596 

For that, null maps of SA loadings were generated by randomly rotating the angles of the 597 

spherical representation of the SA loadings in 1000 permutations. Next, a null distribution was 598 

generated by correlating the null SA loadings with the brain pattern of the principal gradient of 599 

functional connectivity. Finally, a p-value was computed as the percentage of iterations where 600 

the null correlations were higher than the original correlation obtained from the original map of 601 

SA loadings and the map of the principal gradient of functional connectivity. The same 602 

procedure is repeated for CT loadings. 603 

P-values were corrected for multiple comparisons using Bonferroni method over 18 604 

comparisons (3 latent dimensions in one cohort are compared with two latent dimensions in the 605 

other cohort, leading to 6 comparisons. This was repeated 3 times: once for behavioural 606 

loadings, once for CT loadings, and once for SA loadings, leading to 18 comparisons). 607 

Anatomical resolution 608 

To analyse if the latent dimension was captured when using different levels of anatomical 609 

resolution, we repeated the global analyses after parcellating the brain with different 610 

granularities. The analyses reported in the results section correspond to a granularity level of 611 

1239 regions. We used 3 additional combinations of atlases resulting in 323 regions, 1267 612 

regions and 1871 regions. This leads to 4 levels of anatomical resolution (Supplementary table 613 

4). 614 

Modular latent dimensions 615 
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In order to assess if the latent dimension was found when including only one brain structural 616 

feature in the model, we performed three modular (brain structure modality specific) RCCAs 617 

in each cohort. In these modular analyses, the same set of behavioural variables was linked with 618 

only GMV, only CT or only SA as brain variables. In each cohort, the latent dimensions yielded 619 

by these modular analyses were compared with the global latent dimension by correlating their 620 

behavioural loadings, and by performing spin-test on the CT and SA cases (see supplementary 621 

results). P-values corresponding to behavioural loadings were corrected with the Bonferroni 622 

method over 14 multiple comparisons. P-values corresponding to brain loadings were corrected 623 

for multiple comparisons using the Bonferroni method over 8 comparisons. We would like to 624 

already note that the behavioural loadings of the global analyses in both, HCP-YA (r>0.61, 625 

p<0.005) and HCP-A (r<0.66, p<0.001) were significantly correlated with the behavioural 626 

loadings of the first level of all the modular analyses in both samples (Supplementary table 6). 627 

This indicates that the global latent dimensions show the same behavioural profile than the 628 

modular latent dimensions for both cohorts. 629 

Socio-economic status and site effects in the latent dimension 630 

In order to analyse the association of socio-economic status (SES) on the brain-behaviour latent 631 

dimension, we performed an RCCA independently in each cohort, linking brain structure 632 

(GMV, CT and SA) with behaviour and SES. In this set of analyses, the behavioural matrix 633 

included three additional variables as proxies for SES: household income, education, and 634 

employment. The sample sizes for these analyses were n=1047 for HCP-YA (560 females, age 635 

range=22-37 years old) and n=420 for HCP-A (254 females, age range=36-100 years old). In 636 

the HCP-YA cohort, age and gender were regressed out from both, brain, and behavioural data. 637 

In the HCP-A cohort, age, gender, and site (as 4 dummy variables) were regressed out from 638 

both, brain, and behavioural data. In both cohorts, brain data were corrected by brain size using 639 

internal data normalisation. In the HCP-A cohort, the variable household income was converted 640 
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to categorical ordinal in order to be coherent with the HCP-YA cohort (i.e., values <1000 were 641 

replaced by 1, values >1000 & <1999 were replaced by 2, etc). Bonferroni method was used to 642 

correct p-values for multiple comparisons, over 5 comparisons. We assessed the cross-cohort 643 

replicability of these brain-behaviour-SES latent dimensions by correlating their loadings 644 

across cohorts (Pearson’s correlation for behavioural loadings and spin test1 for CT and SA 645 

loadings).  646 

Comparison of brain loadings with gradients of functional connectivity 647 

In order to interpret the brain loadings of the latent dimension found, we compared them with 648 

the first gradient of functional connectivity over the brain cortex33. The gradient locates each 649 

cortical node in a spectrum of gradual transitions of their functional connectivity patterns over 650 

the brain cortex33. Nodes that are located closer in this gradient have similar cortical 651 

connectivity patterns33. To do so, we used spin test32 as provided by BrainSpace toolbox69. 652 

Since data of the principal gradient are provided in surface space, they are comparable with our 653 

CT and SA loadings. GMV loadings were excluded from these analyses since they are 654 

volumetric. Multiple comparisons were corrected using the Bonferroni method over 4 655 

comparisons (2 brain maps in each cohort were compared with the first gradient of functional 656 

connectivity). 657 

Heritability  658 

Heritability is a population parameter that gives insight into the effect of nature and nurture on 659 

a trait70. Heritability in the narrow sense (h2) partitions the total variance of a trait onto variance 660 

influenced by additive genetic factors and environmental factors70–72. It is defined as a ratio of 661 

variances, which estimates the proportion of the total variance of a trait which can be attributed 662 

to variance of additive genetic influences70–72. Despite the concept of heritability having 663 
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limitations and being criticized, it is useful to estimate the importance of additive genetics and 664 

environment on a trait70. The advantage of heritability is that it can be computed relatively 665 

simply and can give insight onto the causes of the trait70. Moreover, if a trait is found to have 666 

high heritability, it suggests that a more comprehensive genetic analysis of that trait is worth 667 

it70. The heritability values are estimated by comparing the observed covariance matrix of the 668 

trait with the covariance matrix predicted by family structure. Traits with higher heritability 669 

show higher covariance in individuals with higher genetic proximity than in individuals with 670 

lower genetic proximity.  671 

Bivariate genetic correlations estimate the shared additive genetic effect between two traits. If 672 

two traits have strong genetic correlations, it can be interpreted that they are influenced by the 673 

same genetic factors (i.e., pleiotropy)23,24. Bivariate genetic correlations decompose the 674 

phenotypic correlation between two traits into genetic (ρg) and environmental (ρe) 675 

correlations23. 676 

In the HCP-YA, we analysed the heritability as well as genetic and environmental correlations 677 

of brain and behavioural scores using a twin-based design (see Figure 1 for definition of scores). 678 

Heritabilities, genetic correlations and environmental correlations were estimated using 679 

Sequential Oligogenic Linkage Analysis Routines version 8.5.1 (SOLAR-Eclipse; www.solar-680 

eclipse-genetics.org). SOLAR-Eclipse uses maximum likelihood variance decomposition to 681 

estimate heritability and can handle family structures of arbitrary size and complexity73. 682 

Ethics and inclusion statement 683 

The ethics protocols for analyses of these data were approved by the Heinrich Heine University 684 

Düsseldorf ethics committee (No. 4039). Informed consents from the participants were obtained 685 

by HCP58. 686 
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Figure captions 744 

Figure 1. Canonical Correlation Analysis (CCA). In the context of searching for brain-behaviour 745 

associations, inputs to the CCA model would be a brain matrix X and a behavioural matrix Y. In both 746 

matrices, each row corresponds to a participant and each column corresponds to a brain or behavioural 747 

variable. CCA identifies brain weights (u) and behavioural weights (v), which describe linear combinations 748 

of the variables in X and in Y, respectively. When projecting the original data X and Y onto the weights u 749 

and v, respectively, scores are obtained (Xu and Yv). The model selects the weights in order to maximise the 750 

canonical correlation, which corresponds to the Pearson’s correlation between the brain scores and the 751 

behavioural scores. The canonical correlation can be visualised as a latent space (dimension) where each dot 752 

represents one participant. To identify those original variables that correlate with the latent dimension, 753 

loadings are obtained. Loadings correspond to the correlation between the original variables in X and Y and 754 

the brain and behavioural scores, respectively. Behav: Behaviour. Green represents brain data, purple 755 

represents behavioural data. 756 

Figure 2. Latent dimension. Latent dimension in a) HCP-YA and in b) HCP-A. Each scatterplot shows 757 

the brain and behavioural scores averaged over the splits in each cohort. Each dot represents one 758 

participant. HCP-YA: n=1047 subjects; HCP-A: n=601 subjects.  759 

Figure 3. Behavioural loadings. Behavioural loadings a) in the HCP-YA cohort and b) in the HCP-A cohort. 760 

Shown loadings represent the average over the 5 outer splits. Error bars depict one standard deviation. The 761 

shadowed zone marks loadings between -0.2 and 0.2. Green represents behavioural variables related to 762 

cognition, blue to alertness and dark red to emotion. HCP-YA: n=1047 subjects; HCP-A: n=601 subjects. 763 

Figure 4. Brain loadings. The left panel shows brain loadings for the HCP-YA cohort, the right panel shows 764 

brain loadings for the HCP-A cohort. a,d) Cortical thickness loadings, b,e) Surface area loadings, c,f) Grey 765 

matter volume loadings. In panels c and f, top row corresponds to MNI coordinates: -43.6, 16, 52.9; bottom 766 

row to MNI coordinates: -10.3, -3.9, -9.1. Shown loadings correspond to the average over the 5 outer splits. 767 

Red represents positive loadings, blue negative loadings. HCP-YA: n=1047 subjects; HCP-A: n=601 768 

subjects. 769 
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