000912049 001__ 912049
000912049 005__ 20240709081848.0
000912049 037__ $$aFZJ-2022-05276
000912049 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author$$ufzj
000912049 1112_ $$aThe Seventh Conference on Frontiers of Aberration Corrected Electron Microscopy$$cKasteel Vaalsbroek$$d2022-05-08 - 2022-05-12$$gPICO 2022$$wNetherlands
000912049 245__ $$aThickness dependent coating breaking during battery cycling by in situ TEM
000912049 260__ $$c2022
000912049 3367_ $$033$$2EndNote$$aConference Paper
000912049 3367_ $$2DataCite$$aOther
000912049 3367_ $$2BibTeX$$aINPROCEEDINGS
000912049 3367_ $$2DRIVER$$aconferenceObject
000912049 3367_ $$2ORCID$$aLECTURE_SPEECH
000912049 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1669890365_19495$$xInvited
000912049 520__ $$aSi has gained considerable attraction as an anode material in Li-ion batteries, in which composite electrodes that have different amounts of Si and carbon (with a theoretical capacity for Si of above ∼4000 mAhg-1 based on a Li22S5 stoichiometry) offer an enhancement in capacity when compared with pure graphite powder (∼370 mAhg−1). However, the breaking of Si particles because of strain caused by repeated lithiation (during battery charge/discharge cycles) limits exploitation of their full capacity and rate capabilities. In particular, the large volume change (>300%) of Si particles upon lithiation can result in particle pulverisation, accompanied by excessive solid electrolyte interphase (SEI) formation. The size-dependent cracking and shape-dependent lithiation behavior of Si has been reported, which provided indications about how the mechanical characteristics of Si particles evolve during battery cycling and affect their electrochemical performance. Even nanosized particles that do not easily break [1] during charge/discharge cycles owing to improved strain relaxation are still plagued by excessive electrolyte consumption associated with multiple SEI formation events, which causes rapid depletion of cyclable Li. Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid–electrolyte interface formation. Here, we use in situ transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities [2].
000912049 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000912049 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000912049 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x2
000912049 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x3
000912049 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b1$$ufzj
000912049 7001_ $$0P:(DE-HGF)0$$aGeorge, Chandramohan$$b2
000912049 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b3$$ufzj
000912049 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4$$ufzj
000912049 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
000912049 909CO $$ooai:juser.fz-juelich.de:912049$$pec_fundedresources$$pVDB$$popenaire
000912049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
000912049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000912049 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Imperial College London$$b2
000912049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b3$$kFZJ
000912049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000912049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000912049 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000912049 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000912049 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x2
000912049 9141_ $$y2022
000912049 920__ $$lyes
000912049 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000912049 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000912049 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000912049 980__ $$aconf
000912049 980__ $$aVDB
000912049 980__ $$aI:(DE-Juel1)IEK-9-20110218
000912049 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000912049 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000912049 980__ $$aUNRESTRICTED
000912049 981__ $$aI:(DE-Juel1)IET-1-20110218