000912057 001__ 912057 000912057 005__ 20240709082005.0 000912057 037__ $$aFZJ-2022-05284 000912057 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author 000912057 1112_ $$aThe 9th Advanced Functional Materials & Devices and The 4th Symposium for Collaborative Research on Energy Science and Technology$$conline$$d2022-03-04 - 2022-03-05$$gAFMD and SCREST$$wJapan 000912057 245__ $$aIn situ TEM studies for making ideal batteries 000912057 260__ $$c2022 000912057 3367_ $$033$$2EndNote$$aConference Paper 000912057 3367_ $$2DataCite$$aOther 000912057 3367_ $$2BibTeX$$aINPROCEEDINGS 000912057 3367_ $$2DRIVER$$aconferenceObject 000912057 3367_ $$2ORCID$$aLECTURE_SPEECH 000912057 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1669890404_22308$$xInvited 000912057 520__ $$aSafety features of Li-ion batteries are a high priority requirement as their adoption in electric vehicles and day-to-day electronic devices is continuously increasing. The liquid electrolytes that are typically used in traditional Li-ion batteries are flammable, especially at higher operating voltages and temperatures. By contrast, an all-solid-state battery (ASSB) makes use of solid electrolyte instead of liquid electrolyte, which reduces the risk of flammability. However, the solid-solid electrolyte-electrode interface in ASSBs introduces different sets of challenges from the traditional liquid-solid electrode-electrolyte interface. First, in batteries containing liquid electrolytes entire surface of electrode particles are wetted by electrolytes, whereas the electrode and solid electrolyte particles in ASSBs are connected primarily at point contacts, which are limited in terms of their numbers (as not all electrode particles are in direct contact with electrolyte particles), therefore ionic transport is basically restricted, diminishing the specific capacity of these batteries. Decomposition reactions at the electrode-electrolyte interfaces during battery cycling cause the formation of passivating layers and as well as electrode volume changes during battery cycling result in loss of contacts between electrode and electrolyte particles, further decreasing direct ion exchange pathways. Second, inhomogeneous (de)lithiation through point contacts can induce strain, which affects electrode mechanical integrity leading to capacity fade. Operando transmission electron microscopy (TEM) allows for the visualization of (de)lithiation processes in electrode materials at a single particle level in real-time. In our recent research, we have utilized the volume change property of Si nanoparticles during (de)lithiation to understand the interface kinetics of an ASSB during cycling. Following the safty aspect, aquous based Zn-batteris are also gathering attention. In this resepect, recent works on Zn-ion batteries using liquid phase TEM will also be discussed. 000912057 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000912057 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1 000912057 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x2 000912057 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x3 000912057 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b1 000912057 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2 000912057 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3 000912057 7001_ $$0P:(DE-HGF)0$$ageorge, chandramohan$$b4 000912057 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5 000912057 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6 000912057 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7 000912057 909CO $$ooai:juser.fz-juelich.de:912057$$pec_fundedresources$$pVDB$$popenaire 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ 000912057 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Imperial College London$$b4 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ 000912057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ 000912057 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH 000912057 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000912057 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1 000912057 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x2 000912057 9141_ $$y2022 000912057 920__ $$lyes 000912057 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000912057 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1 000912057 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2 000912057 980__ $$aconf 000912057 980__ $$aVDB 000912057 980__ $$aI:(DE-Juel1)IEK-9-20110218 000912057 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000912057 980__ $$aI:(DE-Juel1)ER-C-2-20170209 000912057 980__ $$aUNRESTRICTED 000912057 981__ $$aI:(DE-Juel1)IET-1-20110218