001     912059
005     20240712112957.0
024 7 _ |a 10.21105/joss.04312
|2 doi
024 7 _ |a 2128/34011
|2 Handle
037 _ _ |a FZJ-2022-05286
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Zitz, Stefan
|0 P:(DE-Juel1)171909
|b 0
|e Corresponding author
245 _ _ |a Swalbe.jl: A lattice Boltzmann solver for thin film hydrodynamics
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2022
|b Joss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677504562_17974
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Small amounts of liquid deposited on a substrate are an everyday phenomenon. From atheoretical point of view this represents a modelling challenge, due to the multiple scalesinvolved: from the molecular interactions among the three phases (solid substrate, liquidfilm and surrounding vapor) to the hydrodynamic flows. An efficient way to deal with thismultiscale problem is the thin-film equation:𝜕𝑡ℎ = ∇ ⋅ (𝑀 (ℎ)∇𝑝), (1)where ℎ is the film thickness, 𝑀 (ℎ) is a thickness dependent mobility and 𝑝 is the pressure atthe liquid-vapor interface. Solving the thin film equation directly is a difficult task, because it isa fourth order degenerate PDE (Becker et al., 2003). Swalbe.jl approaches this problem froma different angle. Instead of directly solving the thin film equation we use a novel method basedon a class lattice Boltzmann models (Krüger et al., 2016), originally developed to simulateshallow water flows (Salmon, 1999). This approach serves two benefits, on the one hand theease of implementation where the lattice Boltzmann method essentially comprises of two steps:collision and streaming. On the other hand due to the simple algorithm a straightforwardapproach to parallelize the code and run it on accelerator devices. Choosing appropriate forcesit is possible to simulate complex problems. Among them is the dewetting of a patternedsubstrates as shown in Figure 1. Beyond films, low contact angle droplets can be studied andcompared to relaxation experiments, e.g. the Cox-Voinov or Tanner’s law (Bonn et al., 2009).Due to a disjoining pressure model for the three phase contact line droplets can not only relaxtowards their equilibrium they can slide as well (Zitz et al., 2019). All of this can be coupledwith thermal fluctuations to study the stochastic thin film equation (Shah et al., 2019; Zitz etal., 2021).
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|x 0
|f POF IV
536 _ _ |a DFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden
|0 G:(GEPRIS)422916531
|c 422916531
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zellhöfer, Manuel
|0 P:(DE-Juel1)169117
|b 1
700 1 _ |a Scagliarini, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 3
773 _ _ |a 10.21105/joss.04312
|g Vol. 7, no. 77, p. 4312 -
|0 PERI:(DE-600)2891760-1
|n 77
|p 4312 -
|t The journal of open source software
|v 7
|y 2022
|x 2475-9066
856 4 _ |u https://juser.fz-juelich.de/record/912059/files/Swalbe%20jl%20%20A%20lattice%20Boltzmann%20solver%20for%20thin%20film%20hydrodynamics.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912059
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171909
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21