000912070 001__ 912070
000912070 005__ 20240709081851.0
000912070 037__ $$aFZJ-2022-05297
000912070 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author
000912070 1112_ $$a3rd ELECTRA Symposium$$cRWTH Aachen$$d2022-08-31 - 2022-09-01$$wGermany
000912070 245__ $$aVisualization of active solid-gas interface using in situ TEM
000912070 260__ $$c2022
000912070 3367_ $$033$$2EndNote$$aConference Paper
000912070 3367_ $$2BibTeX$$aINPROCEEDINGS
000912070 3367_ $$2DRIVER$$aconferenceObject
000912070 3367_ $$2ORCID$$aCONFERENCE_POSTER
000912070 3367_ $$2DataCite$$aOutput Types/Conference Poster
000912070 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1678790081_6941$$xAfter Call
000912070 520__ $$aPower-to-X enables the production of valuable compounds from the CO2 via catalytic reaction for net-zero carbon economy. The understanding of the behaviors of the supported catalyst under the reaction conditions and the elucidating the associated mechanism are crucial for the rational design of high-performing catalyst materials. The understanding and atomic level information provided by aberration-corrected TEM is unparalleled, particularly for the study of catalyst nanoparticles. Post-mortem analysis can make it difficult to underpin the specifics of a catalytic reaction mechanism, without being able to observe the structures under a realistic environment. The development of specialized microelectromechanical systems (MEMS) based sample holder now allows us to contain gas near the sample at more than 1 bar pressure with precise control over heat, gas flow and gas compositions
000912070 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000912070 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x1
000912070 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x2
000912070 7001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b1
000912070 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2
000912070 909CO $$ooai:juser.fz-juelich.de:912070$$pec_fundedresources$$pVDB$$popenaire
000912070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
000912070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b1$$kFZJ
000912070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000912070 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
000912070 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000912070 9141_ $$y2022
000912070 920__ $$lyes
000912070 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000912070 9201_ $$0I:(DE-Juel1)ER-C-20211020$$kER-C$$lER-C 2.0$$x1
000912070 980__ $$aposter
000912070 980__ $$aVDB
000912070 980__ $$aI:(DE-Juel1)IEK-9-20110218
000912070 980__ $$aI:(DE-Juel1)ER-C-20211020
000912070 980__ $$aUNRESTRICTED
000912070 981__ $$aI:(DE-Juel1)IET-1-20110218