Hauptseite > Publikationsdatenbank > Visualization of active solid-gas interface using in situ TEM > print |
001 | 912070 | ||
005 | 20240709081851.0 | ||
037 | _ | _ | |a FZJ-2022-05297 |
100 | 1 | _ | |a Basak, Shibabrata |0 P:(DE-Juel1)180432 |b 0 |e Corresponding author |
111 | 2 | _ | |a 3rd ELECTRA Symposium |c RWTH Aachen |d 2022-08-31 - 2022-09-01 |w Germany |
245 | _ | _ | |a Visualization of active solid-gas interface using in situ TEM |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1678790081_6941 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Power-to-X enables the production of valuable compounds from the CO2 via catalytic reaction for net-zero carbon economy. The understanding of the behaviors of the supported catalyst under the reaction conditions and the elucidating the associated mechanism are crucial for the rational design of high-performing catalyst materials. The understanding and atomic level information provided by aberration-corrected TEM is unparalleled, particularly for the study of catalyst nanoparticles. Post-mortem analysis can make it difficult to underpin the specifics of a catalytic reaction mechanism, without being able to observe the structures under a realistic environment. The development of specialized microelectromechanical systems (MEMS) based sample holder now allows us to contain gas near the sample at more than 1 bar pressure with precise control over heat, gas flow and gas compositions |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
536 | _ | _ | |a iNEW2.0 (BMBF-03SF0627A) |0 G:(DE-Juel1)BMBF-03SF0627A |c BMBF-03SF0627A |x 1 |
536 | _ | _ | |a Electroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916) |0 G:(EU-Grant)892916 |c 892916 |f H2020-MSCA-IF-2019 |x 2 |
700 | 1 | _ | |a Park, Junbeom |0 P:(DE-Juel1)180853 |b 1 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 2 |
909 | C | O | |o oai:juser.fz-juelich.de:912070 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180432 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180853 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2022 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-20211020 |k ER-C |l ER-C 2.0 |x 1 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-20211020 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|