001     912083
005     20240429104843.0
024 7 _ |a 10.1016/j.tibtech.2022.10.010
|2 doi
024 7 _ |a 0167-7799
|2 ISSN
024 7 _ |a 0167-9430
|2 ISSN
024 7 _ |a 1879-3096
|2 ISSN
024 7 _ |a 10.34734/FZJ-2022-05310
|2 datacite_doi
024 7 _ |a 36456404
|2 pmid
024 7 _ |a WOS:001196982900001
|2 WOS
037 _ _ |a FZJ-2022-05310
082 _ _ |a 570
100 1 _ |a Helleckes, Laura M.
|0 P:(DE-Juel1)178687
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Machine learning in bioprocess development: from promise to practice
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692364044_8450
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges, and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hemmerich, Johannes
|0 P:(DE-Juel1)165723
|b 1
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 2
|u fzj
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 3
|u fzj
700 1 _ |a Grünberger, Alexander
|0 P:(DE-Juel1)143612
|b 4
773 _ _ |a 10.1016/j.tibtech.2022.10.010
|g p. S0167779922002815
|0 PERI:(DE-600)2011002-9
|n 6
|p S0167779922002815
|t Trends in biotechnology
|v 41
|y 2023
|x 0167-7799
856 4 _ |u https://juser.fz-juelich.de/record/912083/files/2210.02200.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912083
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178687
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRENDS BIOTECHNOL : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2023-10-22
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b TRENDS BIOTECHNOL : 2022
|d 2023-10-22
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21