Home > Publications database > Machine learning in bioprocess development: from promise to practice > print |
001 | 912083 | ||
005 | 20240429104843.0 | ||
024 | 7 | _ | |a 10.1016/j.tibtech.2022.10.010 |2 doi |
024 | 7 | _ | |a 0167-7799 |2 ISSN |
024 | 7 | _ | |a 0167-9430 |2 ISSN |
024 | 7 | _ | |a 1879-3096 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2022-05310 |2 datacite_doi |
024 | 7 | _ | |a 36456404 |2 pmid |
024 | 7 | _ | |a WOS:001196982900001 |2 WOS |
037 | _ | _ | |a FZJ-2022-05310 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Helleckes, Laura M. |0 P:(DE-Juel1)178687 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Machine learning in bioprocess development: from promise to practice |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1692364044_8450 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess development provides large amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have great potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. Herein we demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring, and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges, and point out domains that can potentially benefit from technology transfer and further progress in the field of ML. |
536 | _ | _ | |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) |0 G:(DE-HGF)POF4-2172 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hemmerich, Johannes |0 P:(DE-Juel1)165723 |b 1 |
700 | 1 | _ | |a Wiechert, Wolfgang |0 P:(DE-Juel1)129076 |b 2 |u fzj |
700 | 1 | _ | |a von Lieres, Eric |0 P:(DE-Juel1)129081 |b 3 |u fzj |
700 | 1 | _ | |a Grünberger, Alexander |0 P:(DE-Juel1)143612 |b 4 |
773 | _ | _ | |a 10.1016/j.tibtech.2022.10.010 |g p. S0167779922002815 |0 PERI:(DE-600)2011002-9 |n 6 |p S0167779922002815 |t Trends in biotechnology |v 41 |y 2023 |x 0167-7799 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/912083/files/2210.02200.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:912083 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178687 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129076 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129081 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2172 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-22 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b TRENDS BIOTECHNOL : 2022 |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-22 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1120 |2 StatID |b BIOSIS Reviews Reports And Meetings |d 2023-10-22 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b TRENDS BIOTECHNOL : 2022 |d 2023-10-22 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|