Home > Publications database > The potential of myelin-sensitive imaging: Redefining spatiotemporal patterns of myeloarchitecture > print |
001 | 912115 | ||
005 | 20230929112459.0 | ||
024 | 7 | _ | |a 10.1016/j.biopsych.2022.08.031 |2 doi |
024 | 7 | _ | |a 0006-3223 |2 ISSN |
024 | 7 | _ | |a 1873-2402 |2 ISSN |
024 | 7 | _ | |a 2128/33837 |2 Handle |
024 | 7 | _ | |a 36481065 |2 pmid |
024 | 7 | _ | |a WOS:000927358100001 |2 WOS |
037 | _ | _ | |a FZJ-2022-05338 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Paquola, Casey |0 P:(DE-Juel1)187055 |b 0 |e Corresponding author |
245 | _ | _ | |a The potential of myelin-sensitive imaging: Redefining spatiotemporal patterns of myeloarchitecture |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1675166003_18720 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin. Then, we discuss recent studies that have probed the nonuniform distribution of myelin across cortical layers and along white matter tracts. These approaches, collectively known as myelin profiling, have provided detailed depictions of myeloarchitecture in both the postmortem and living human brain. Notably, MRI-based profiling studies have recently focused on investigating whether it can capture interindividual variability in myelin characteristics as well as trajectories across the lifespan. Finally, another line of recent evidence emphasizes the contribution of region-specific myelination to large-scale organization, demonstrating the impact of myelination on global brain networks. In conclusion, we suggest that combining well-validated MRI markers with profiling techniques holds strong potential to elucidate individual differences in myeloarchitecture, which has important implications for understanding brain function and disease. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) |0 G:(DE-HGF)InterLabs-0015 |c InterLabs-0015 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hong, Seok-Jun |0 P:(DE-HGF)0 |b 1 |
773 | _ | _ | |a 10.1016/j.biopsych.2022.08.031 |g p. S0006322322015827 |0 PERI:(DE-600)1499907-9 |n 5 |p 442-454 |t Biological psychiatry |v 93 |y 2023 |x 0006-3223 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/912115/files/1-s2.0-S0006322322015827-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:912115 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187055 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOL PSYCHIAT : 2022 |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-25 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b BIOL PSYCHIAT : 2022 |d 2023-08-25 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|