001     912115
005     20230929112459.0
024 7 _ |a 10.1016/j.biopsych.2022.08.031
|2 doi
024 7 _ |a 0006-3223
|2 ISSN
024 7 _ |a 1873-2402
|2 ISSN
024 7 _ |a 2128/33837
|2 Handle
024 7 _ |a 36481065
|2 pmid
024 7 _ |a WOS:000927358100001
|2 WOS
037 _ _ |a FZJ-2022-05338
082 _ _ |a 610
100 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 0
|e Corresponding author
245 _ _ |a The potential of myelin-sensitive imaging: Redefining spatiotemporal patterns of myeloarchitecture
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675166003_18720
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin. Then, we discuss recent studies that have probed the nonuniform distribution of myelin across cortical layers and along white matter tracts. These approaches, collectively known as myelin profiling, have provided detailed depictions of myeloarchitecture in both the postmortem and living human brain. Notably, MRI-based profiling studies have recently focused on investigating whether it can capture interindividual variability in myelin characteristics as well as trajectories across the lifespan. Finally, another line of recent evidence emphasizes the contribution of region-specific myelination to large-scale organization, demonstrating the impact of myelination on global brain networks. In conclusion, we suggest that combining well-validated MRI markers with profiling techniques holds strong potential to elucidate individual differences in myeloarchitecture, which has important implications for understanding brain function and disease.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hong, Seok-Jun
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1016/j.biopsych.2022.08.031
|g p. S0006322322015827
|0 PERI:(DE-600)1499907-9
|n 5
|p 442-454
|t Biological psychiatry
|v 93
|y 2023
|x 0006-3223
856 4 _ |u https://juser.fz-juelich.de/record/912115/files/1-s2.0-S0006322322015827-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912115
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187055
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL PSYCHIAT : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BIOL PSYCHIAT : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21