
PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

Decomposing neural networks as mappings of correlation functions

Kirsten Fischer ,1,2,* Alexandre René ,1,3,4 Christian Keup ,1,2 Moritz Layer ,1,2

David Dahmen ,1 and Moritz Helias 1,4

1Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6)
and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425 Jülich, Germany

2RWTH Aachen University, 52062 Aachen, Germany
3Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Canada

4Department of Physics, Faculty 1, RWTH Aachen University, 52074 Aachen, Germany

(Received 24 February 2022; accepted 19 September 2022; published 28 November 2022)

Understanding the functional principles of information processing in deep neural networks continues to be a
challenge, in particular for networks with trained and thus nonrandom weights. To address this issue, we study the
mapping between probability distributions implemented by a deep feed-forward network. We characterize this
mapping as an iterated transformation of distributions, where the nonlinearity in each layer transfers information
between different orders of correlation functions. This allows us to identify essential statistics in the data, as well
as different information representations that can be used by neural networks. Applied to an XOR task and to
MNIST, we show that correlations up to second order predominantly capture the information processing in the
internal layers, while the input layer also extracts higher-order correlations from the data. This analysis provides
a quantitative and explainable perspective on classification.

DOI: 10.1103/PhysRevResearch.4.043143

I. INTRODUCTION

Recent years have shown a great success of deep neural
networks in solving a wide range of tasks, from image recog-
nition [1] to playing Go [2]. One major branch is supervised
learning, where input-output mappings are learned from ex-
amples. In many common problems the target output values
are given by a finite set, defining a classification task [3].
The objective then is to minimize an error measure between
the correct class label and the prediction made by the neural
network with respect to the joint probability distribution of
data samples and class labels [4]. Thus, training dynamics,
and consequently the solution strategy implemented by the
network, depend on this probability distribution and the in-
formation it encodes. In this view, a network implements a
transformation of the input distribution with the objective to
concentrate the output distribution around the assigned target
values for each class. How such a transformation is achieved
and how the network training depends on the statistics of the
presented data is, however, still mostly unknown.

To render the decision-making process of neural networks
transparent, a profound understanding regarding their func-
tional principles and extraction of meaningful features from
given data is required. Over the past years the discrepancy

*ki.fischer@fz-juelich.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

between success in applications and limited understanding has
led to an increased interest also in the theoretical community
[4–9]. An important line of theoretical research investigates
ensembles of neural networks in the limit of infinite width for
which the central limit theorem implies an exact equivalence
to Gaussian processes (GPs) [10–13]. While this approach
is informative with respect to how relations between data
samples are transformed by the network, it does not reveal
how the internal structure of data samples is processed. As
an example, for image classification the Gaussian process
view takes into account the relation between all corresponding
pixels xα

i , xβ
i of any pair of images α, β in the form of a scalar

product
∑

i xα
i xβ

i . Even though the data statistics shape the
eigenfunctions of the GP’s covariance matrix [14], Sec. 4.3,
it is not obvious which role is played by the structure within
individual images determined by, e.g., correlations between
pixel values xα

i and xα
j . In particular, due to the rotational sym-

metry of the scalar product, the GP view gives identical results
when image pixels are shuffled consistently across all images.
However, clearly the internal structure of data samples also
contains important information that may be employed to solve
a given task. The focus of this study is to investigate how
this information is extracted from the data and utilized by the
network to perform classification.

Other approaches [15–17], similarly as GPs, focus on
ensembles of networks with randomly drawn weights. In con-
trast, here we study how particular realizations of trained
and untrained networks process different statistical features
of the data. Thus, we shift the perspective from distributions
over network parameters to distributions over the data. In
particular, we describe the input-output mapping implemented

2643-1564/2022/4(4)/043143(23) 043143-1 Published by the American Physical Society

https://orcid.org/0000-0001-9973-9953
https://orcid.org/0000-0003-3795-5073
https://orcid.org/0000-0001-6258-8135
https://orcid.org/0000-0002-7363-2688
https://orcid.org/0000-0002-7664-916X
https://orcid.org/0000-0002-0404-8656
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043143&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevResearch.4.043143
https://creativecommons.org/licenses/by/4.0/

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

by deep neural networks in terms of correlation functions.
To trace the transformation of correlation functions across
layers of neural networks, we make use of methods from
statistical field theory [18–21] and obtain recursive relations
in a perturbative manner by means of Feynman diagrams. Our
results yield a characterization of the network as a nonlinear
mapping of correlation functions, where each layer exchanges
information between different statistical orders. Reexpressing
the loss function in terms of data correlations allows us to
study their role in the training process, and to link the transfor-
mation of data correlations to the solution strategies found by
the network. For the particular example of the mean squared
error loss function, we show that network training relies ex-
clusively on the first two cumulants of the output (mean and
covariance), while these, in turn, are predominantly deter-
mined by means and covariances of network activations in
previous layers. Furthermore, we show that corrections from
higher-order correlations to mean and covariance, which are
readily computable with the proposed generic field-theoretical
framework, are of greatest importance in the first layer, where
these corrections effectuate the information flow from higher-
order correlations to mean and covariance.

The structure of this study is as follows: Section II provides
theoretical background on the definition and architecture of
deep neural networks (Sec. II A), on empirical risk mini-
mization in the context of classification (Sec. II B), and on
field-theoretical descriptions of probability distributions in
terms of cumulants and their generating function (Sec. II C).
In Sec. III we decompose the network mapping into cor-
relation functions, tracing their transformations backwards
through the network. We start by relating the loss to the
first- and second-order correlations of the network outputs
(Sec. III A), then discuss the mapping of correlations by indi-
vidual hidden layers (Sec. III B), and end with the extraction
of data correlations by the input layer (Sec. III C). Section IV
applies these theoretical tools to several example data sets.
We start with an adaptation of the XOR problem, where the
input statistics are fully known and selectively presented to the
network to study different encoding and processing schemes
of class identities (Sec. IV B). We proceed with an application
to the MNIST data set [22], where we show that classification
performance is largely based on the transformation of means
and covariances across layers (Sec. IV C). Finally, we show-
case the importance of higher-order correlations and their
extraction in the input layer by constructing a data set where
information on class identity is only encoded in correlations
of third and higher order (Sec. IV D). In Sec. V we discuss our
results and provide an outlook.

II. THEORETICAL BACKGROUND

A. Feed-forward network architecture

We consider fully connected neural networks with L layers
of Nl neurons each, and one additional linear readout layer,
as shown in Fig. 1(a). Each layer l = 1, . . . , L consists of an
affine transformation

zl
i =

Nl−1∑
j=1

W l
i j yl−1

j + bl
i (1)

FIG. 1. (a) Network analysis based on data samples considers
each data sample x(d) separately as it passes through the network,
producing a single corresponding output y(d). Each layer consists
of an affine transformation (W l , bl) followed by a nonlinearity φ

applied componentwise. (b) Network analysis based on data statistics
considers how the entire data distribution p(x) is transformed by the
network. At each step, the intermediate distribution is parametrized
by its cumulants, the most important of which are the mean μ and
the covariance �. The affine step transforms μ and � independently,
while the nonlinearity φ causes a nontrivial interaction of the two.

parametrized by a weight matrix W l ∈ RNl ×Nl−1 and bias
vector bl ∈ RNl . This step is followed by the pointwise ap-
plication of a nonlinear activation function φ, yielding

yl
i = φ

(
zl

i

) = φ

(
Nl−1∑
j=1

W l
i j yl−1

j + bl
i

)
. (2)

Here y0 = x ∈ RN0 denotes the input data of dimension N0.
The readout layer produces the network output y ∈ Rdout ,
specifically, yi = zL+1

i . The network mapping y = g(x; θ) is
given by iterating over network layers and characterized by
parameters θ := {W l , bl}l=1,...,L+1.

We initialize all network parameters randomly from inde-
pendent and identically distributed (i.i.d.) centered Gaussians

W l
i j

i.i.d.∼ N (0, σ 2
w/Nl−1) and bl

i
i.i.d.∼ N (0, σ 2

b) before training.
The scaling of the variance σ 2

w/Nl−1 is chosen such that the
covariance of zl [see Eq. (1)] is independent of the layer width.

B. Learning theory: Empirical risk minimization

The fundamental assumption underlying classification1 is
the existence of a joint distribution p(x, t) of data samples x

1Since this work focuses on classification tasks, we tailor the pre-
sentation of empirical risk minimization to that context.

043143-2

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

and class labels t that is the same for training and evaluation
[3]. By Bayes’ theorem, the distribution of the input data
can be treated as a mixture model p(x) =∑t p(t) p(x|t). The
network’s task is then to implement a mapping g : x �→ y
that minimizes the expectation of a loss �(y, t) between the
network outputs y = g(x; θ) and the labels t .

This mapping, in turn, induces a mapping of the probability
distributions

p(x|t) �→ p(y|t ; θ) =
∫

δ[y − g(x; θ)] p(x|t) dx (3)

for each label t , where δ(·) refers to the Dirac delta dis-
tribution. The unconditioned output distribution is then the
weighted sum p(y) =∑t p(t) p(y|t ; θ). Ideally, the network
output y matches the true label t so that the target distribution
is given by p(y|t) = δ(y − t).

Training algorithms seek to minimize the expected loss or
risk functional [23]

R(θ) = 〈�(y, t)〉y|θ =
∑

t

p(t) 〈�(y, t)〉y|t ;θ , (4)

where the expectation value 〈·〉y|t ;θ is taken with regard to
the class-conditional output distributions p(y|t ; θ). In general,
neither the mixture components of the input distribution p(x|t)
nor the induced class-conditional output distributions p(y|t ; θ)
are known. Instead, the expected loss is replaced by the em-
pirical loss or risk

Remp(θ) = 1

D

D∑
d=1

�
(
g
(
x(d); θ

)
, t (d)), (5)

evaluated for a training set {(x(d), t (d))}d , with D being
its size and d the respective sample index. The empiri-
cal risk minimization principle then assumes the following:
the mapping g(· ; θ∗) that minimizes the empirical risk
θ∗ = argminθ Remp(θ) yields an expected risk R(θ∗) that is
close to its minimum minθ R(θ) [23].

C. Parametrization of probability distributions in terms
of cumulants

This section contains the framework to track data corre-
lations (cumulants) of arbitrary order through the network.
Large parts of the main text deal with the first two orders,
the Gaussian approximation. Readers who want to obtain an
overview of the main results may skip the remainder of this
section at first read. This part, however, becomes essential
when including non-Gaussian corrections and as a means to
obtain an intuitive picture of how nonlinear transformations
couple the different statistical orders.

Neural networks can be regarded as complex systems that
generate many interactions between data components. A com-
mon approach to investigate such systems is by studying
generating functions of moments or cumulants rather than the
probability distributions themselves. Cumulants often provide
a more convenient parametrization of probability distributions
as they are additive with respect to addition of independent
variables, leading to simpler expressions for the transforma-
tion of statistics across layers. Such approaches are common
in statistical physics and in mathematical statistics.

The network mapping g : x �→ y relates the cumulant gen-
erating function of network outputs y to the statistics of the
input x:

Wy|t ;θ (j) = ln 〈exp(jᵀy)〉y|t ;θ (6)

= ln 〈exp(jᵀg(x; θ))〉x|t . (7)

The cumulant generating function is considered per class t as
the data statistics are expected to differ between classes. The
class-conditional output cumulant of order n denoted by G(n)

y|t ;θ
is then defined as

G(n)
y|t ;θ = dnWy|t ;θ (j)

d jn

∣∣∣∣
j=0

.

Evaluating Eq. (7) would in principle allow one to relate
G(n)

y|t ;θ to the input cumulants G(n′)
x|t ;θ . However, one intricacy is

that the network mapping g(x; θ) is given via the iterations
in Eq. (2). Their iterative nonlinear nature makes deep neural
networks powerful as universal function approximators, but
complicates their analysis in terms of data processing. Yet,
we can study the transformation of cumulants from input to
output by considering layers individually.

Since preactivations zl are determined by affine linear
transformations, the cumulant generating function of preac-
tivations zl in layer l is trivially related to the cumulant
generating function of postactivations yl−1 of layer l − 1 as

Wzl (j) = ln 〈exp(jᵀzl)〉zl

= ln 〈exp(jᵀW l yl−1 + jᵀbl)〉yl−1

= Wyl−1 ((W l)ᵀ j) + jᵀbl , (8)

yielding for the first-order cumulant (n = 1)

G(1)
zl = W l G(1)

yl−1 + bl , (9)

and for second- and higher-order cumulants (n � 2)

G(n)
zl , (r1,...,rn) =

∑
s1,...,sn

W l
r1 s1

. . .W l
rn sn

G(n)
yl−1, (s1,...,sn). (10)

Each index si is hence contracted with one factor W l
rksi

to
produce the index rk of the resulting cumulant. Consequently,
cumulants of preactivations zl are linear tensor transforma-
tions of cumulants of postactivations yl−1 of the same order.

The nonlinear activation function φ in each layer l
then relates the preactivations zl to the corresponding
postactivations yl :

Wyl (j) = ln 〈exp(jᵀyl)〉yl

= ln 〈exp(jᵀφ(zl))〉zl . (11)

This cumulant generating function of the postactivations yl

cannot, in general, be computed exactly. One common ap-
proximation technique is a perturbative expansion [21], which
we here recast in the following way: by replacing φ(zl) with

its Taylor expansion
∑

m
φ(m)|zl =0

m! (zl)m in Eq. (11) and treating

043143-3

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

TABLE I. Diagrammatic elements for the perturbative expansion
of Wyl (j) for yl = φ(zl).

nonlinear terms (m > 1) as perturbations, we can construct
cumulants G(n)

yl as series of Feynman diagrams composed of
the graphical elements shown in Table I. For example, for the
mean of the first layer we get the following diagrams:

(12)

We find that in general these expressions involve two types of
factors, which we represent with two types of vertices: empty
circles with internal lines, representing cumulants G(n)

zl of pre-
activations zl , and hatched circles with one external line j that

stem from Taylor coefficients
φ(m)|zl =0

m! of the nonlinearity.
For constructing a cumulant G(n)

yl of the postactivations yl

of order n, we need to determine all diagrams with n external
lines. External lines occur on cumulant vertices as well as
on hatched vertices. Furthermore, they always need to be
connected to a cumulant vertex, but cannot be connected to
one another. Finally, due to the linked cluster theorem, only
connected diagrams need to be considered since others do
not contribute to cumulants. When evaluating the generated
diagrams, all permutations of indices (r1, . . . , rn) for both
internal and external lines need to be taken into account.
Symmetries within diagrams result in their repeated occur-
rence, which is reflected in combinatorial prefactors (for more
details, see [21]).

Using this perturbative approach for determining the cumu-
lants G(n)

yl of the postactivations yl has two main advantages:
First, it provides a principled way to go beyond Gaussian
statistics and include higher-order cumulants. Second, the
availability of a diagrammatic language allows us to graphi-
cally represent the information transfer from cumulants G(n)

zl

of the preactivations zl to cumulants G(m)
yl of the postactiva-

tions yl .
The diagrammatic representation introduced above as-

sumes that the activation function φ can be expanded as a
Taylor series. For nondifferentiable functions such as ReLU,

this approach can be adapted by using a Gram-Charlier ex-
pansion of the probability distribution p(zl). The expectation
value in Eq. (11) then becomes a sum of Gaussian integrals,
which can be calculated either analytically (see Appendix C
for ReLU as an example) or numerically.

III. DECOMPOSING DEEP NEURAL NETWORKS INTO
CORRELATION FUNCTIONS

Analyzing how deep networks process data is difficult due
to their iterative, parameter-dependent definition. Statistical
learning theory studies the expected error [24], thus shifting
from the transformation of data samples to that of data dis-
tributions. We follow this idea here by studying how data
correlations of the input are iteratively transformed by deep
networks, as illustrated in Fig. 1, and how they shape the
expected loss.

A. Data correlations drive network training

We here discuss the dependence of the expected loss in
Eq. (4) on the data correlations. In general, the expected risk
R(θ) is a function of the class labels t and the class-conditional
cumulants G(n)

y|t ;θ of arbitrary orders n:

R(θ) =
∑

t

∫
dy �(y, t) p(y|t ; θ)

=:
∑

t

σt
({

G(n)
y|t ;θ

}
n

)
=: σ

({{
G(n)

y|t ;θ

}
n; t
}

t

)
.

However, for the often employed mean-squared error
�MSE(y, t) = ‖y − t‖2, R(θ) only depends on the mean μt

y and
variance �t

y of outputs of each class t as

RMSE
({

μt
y, �

t
y; t
}

t

) =
∑

t

p(t)
(
tr �t

y + ‖μt
y − t‖2

)
. (13)

Training therefore aims to match class means and labels, while
minimizing the variance of each class’s output.2

In this case, the first- and second-order cumulants (mean
and covariance) of the last layer alone drive network training,
thus singling these out as the relevant statistics. This result
has two implications: (1) In deep feed-forward networks, only
non-Gaussian statistics that appear in network layers before
the final layer can contribute to the learned information pro-
cessing by influencing the first two cumulants in the final
layer. (2) If networks produce non-Gaussian statistics in the
final layer, these do not serve a functional role per se; rather
they may arise as a by-product of earlier layers operating on
higher-order statistics.

2Equation (13) should not be confused with the bias-variance de-
composition [25], where the expectation over finite data sets of fixed
size is taken instead of the expectation over the input distribution
p(x) itself.

043143-4

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

Thus, understanding the network mapping reduces to un-
derstanding how the Gaussian statistics (μt

y, �
t
y) of the output

arise from the presented data distribution across multiple net-
work layers. Network training and the resulting information
processing within the network is therefore directly linked to
how data correlations are transformed by the network.

B. Propagation of data correlations within the network

To understand how the extraction of information from the
input and its internal processing shape the first- and second-
order cumulants of the output, we follow these two quantities
backwards through the network. According to Eqs. (8)–(10),
the affine transformation in each layer implies for the preacti-
vations zl

μzl = W l μyl−1 + bl , �zl = W l �yl−1 (W l)T, (14)

showing that the two quantities are transformed independently
of each other in this step (Fig. 1).

In general, the nonlinear activation function φ : zl �→ yl

makes the statistics of the postactivations yl dependent on
cumulants of arbitrary orders in the preactivations zl through
(cf. Sec. II C)

μyl = dWyl (j)

d j

∣∣∣∣
j=0

= 〈φ(zl)〉zl , (15)

�yl = d2Wyl (j)

d j d jT

∣∣∣∣
j=0

= 〈φ(zl) φ(zl)T〉zl − μyl μT
yl . (16)

However, due to the central limit theorem, initializing
the weights independently causes the affine transformation
yl−1 �→ zl to mainly pass on the Gaussian part of the statistics
since higher-order cumulants G(n)

zl , (i1,...,in) = 〈〈zl
i1 zl

i2 . . . zl
in〉〉 ∼

O[(Nl−1)−
n
2 +1] are suppressed by the layer width Nl−1 for

n > 2. In Appendix B we derive sufficient conditions under
which the Gaussian approximation remains valid also for
wide trained networks. In brief, we find that it suffices to
have a natural scaling of weights w ∼ O(N− 1

2) as well as an
approximate orthogonal decomposition of the sending layer’s
covariance matrix by the row vectors of the connectivity to
the next layer, Eq. (B7). These conditions are in particular
different from those of the lazy (kernel or neural tangent
kernel) regimes, where weights only change marginally. Un-
der these conditions, in the limit of infinitely wide networks,
expectations over preactivations 〈·〉zl can be taken with respect
to Gaussian distributions zl ∼ N (μzl , �zl), and we obtain that
the mean and covariance of postactivations are nonlinear func-
tions of only mean and covariance of preactivations

μyl = fμ(μzl , �zl), �yl = f� (μzl , �zl). (17)

These functions mediate interactions between first- and
second-order cumulants.

Applying this argument iteratively to the network layers
l = L + 1, L, . . . , 2, it follows that the information process-
ing in the internal network layers is largely determined by
an iterated, nonlinear mapping of mean and covariance. The
interaction functions fμ and f� can be calculated numerically
for arbitrary activation functions. In particular, φ need not
be differentiable. Analytic expressions can be obtained for
various activation functions φ; we provide expressions for

φ = ReLU and φ(z) = z + α z2 in Appendix C, Table II. The
latter, minimally nonlinear activation function yields espe-
cially interpretable interaction functions that are constructed
from the following diagrams:

, (18a)

(18b)

The last diagram contributing to �yl , i j corresponds to an
expression containing two terms. These terms result from the
permutation of the indices (i, j) (see Sec. II C).

Training introduces correlations between weights, thus
violating the independence assumption of the central limit
theorem. Also, the sufficient conditions for the Gaussian ap-
proximation to be consistent (Appendix B) are not necessary
conditions; for example, pairs of neurons may be perfectly
correlated without violating a Gaussian description. We will
therefore show in the following that empirically the first- and
second-order cumulants provide a useful approximation for
the information propagation within the network.

C. Information extraction in the input layer

So far we have studied the internal network layers. Here,
we discuss the role of the input layer in extracting information
from higher-order correlations of the input data. Since the
preactivations of this layer z1

i =∑N0
j=1 W 1

i j x j + b1
i involve a

sum over the input dimension N0 instead of the network width

N , higher-order cumulants G(n>2)
z1 scale with N

1− n
2

0 and need
to be taken into account for smaller input dimension N0. In
consequence, cumulants of multiple orders n contribute to the
mean and covariance of the postactivations y1:

μy1 = hμ

({
G(n)

z1

}
n

)
, �y1 = h�

({
G(n)

z1

}
n

)
. (19)

These mean and covariance are then passed on through the
entire network.

The interaction functions hμ and h� can be systematically
approximated for any activation function, either by the dia-
grammatic techniques discussed in Sec. II C in the case of
differentiable functions or alternatively by a Gram-Charlier
expansion for nondifferentiable functions (see Appendix C
for ReLU as an example). Analytically simple and exact ex-
pressions can be computed for a quadratic nonlinearity [see
Eq. (18a)]; in this case, the expression for the mean does not
get any contribution from G(n>2)

z1 , while the covariance gets

043143-5

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

additional contributions from third- and fourth-order input
correlations:

As in the previous section, there are two diagrams that each
correspond to an expression containing multiple terms. These
terms result from the permutation of the indices (i, j) (see
Sec. II C).

The cumulants of the preactivations G(n)
z1 are linked to the

cumulants of the input data G(n)
x by a mapping between corre-

sponding orders n as G(n)
x → G(n)

z1 [see Eq. (10)], yielding

μy1 = h̃μ

({
G(n)

x

}
n; {W 1, b1}),

�y1 = h̃�

({
G(n)

x

}
n; {W 1, b1}).

Thus, the input layer effectively extracts information from
higher-order correlations of the input data G(n>2)

x .

D. Statistical model of a feed-forward network

Putting together all previous sections, we introduce the
statistical model corresponding to a given network model.
This model represents the information processing performed
by the network in terms of the data correlations {G(n)

x }n.
By iterating Eqs. (14), (19), and (17), respectively, across

layers, one obtains the mean and covariance of the network
output y = g(x; θ) as functions of the statistics of x:

μy = W L+1
(

fμ
(
. . .
{
h̃ν

({
G(n)

x

}
n

)}
ν=μ,�

. . .
))+ bL+1

=: gμ

({
G(n)

x

}
n
; θ, φ

)
, (20)

�y = W L+1
(

f�
(
. . .
{
h̃ν

({
G(n)

x

}
n

)}
ν=μ,�

. . .
))

(W L+1)T

=: g� (
{
G(n)

x

}
n
; θ, φ

)
. (21)

Since the network decomposes into a mapping for each class
label t , one obtains the distribution of the network output
as a Gaussian mixture p(y) =∑t p(t)N (μt

y, �
t
y)(y). The pa-

rameters (μt
y, �

t
y) are determined by the propagation of data

correlations {G(n), t
x }n, t through the network equations (20)

and (21). Note that these are generally not exact due to the
Gaussian approximation of preactivations zl at each interme-
diate layer. In the following, we call the mapping

gstat :
({

G(n), t
x

}
n, t , θ, φ

) �→ p(y) (22)

the statistical model of the network. One important feature is
that the statistical model shares the parameter structure θ =
{W l , bl}l=1,...,L+1 with the corresponding network model. In

consequence, there is a one-to-one correspondence between
the statistical model (22) and the network model g : (x; θ) �→
y given a fixed set of parameters θ .

Beyond empirically comparing these two models, the sta-
tistical model can be used to assess the relevance of data
correlations {G(n), t

x }n, t for solving a particular task. We have
shown in Sec. III A that the expected mean squared error
loss function RMSE({μt

y, �
t
y}t) is given by Eq. (13), so that

it depends solely on mean and covariance of the output. By
the statistical model (22), the mean-squared error RMSE thus
can be approximated as a function of the data correlations
{G(n), t

x }n, t and the network parameters θ :

RMSE
({

μt
y, �

t
y

}
t

)
(23)

≈ RMSE
({

G(n), t
x

}
n,t ; θ

)
. (24)

Minimizing this loss then yields optimal parameters θ∗ for the
statistical model. The corresponding network model g(x; θ∗)
is then dependent on the given set of data correlations
{G(n), t

x }n, t , allowing the investigation of their relevance in
solving a particular network task.

IV. EXPERIMENTAL RESULTS

We now apply the developed methods to the XOR problem
and the MNIST data set. We use the network architecture
defined in Sec. II A with fixed network width Nl = N for
l � 1 and either the ReLU activation function or a mini-
mal nonlinearity, namely, the quadratic activation function
φ(z) = z + α z2 with α = 0.5.

A. Training details

For initialization of network parameters θ , we use σ 2
w =

σ 2
b = 0.75. Following the standard procedure, networks are

trained by optimizing the empirical risk per data batch
{(x(b), t (b))}b of the expected MSE loss:

Remp, MSE(θ) = 1

B

B∑
b=1

�MSE
(
g
(
x(b); θ

)
, t (b)). (25)

The batch size B is set to 10 on XOR and 100 on MNIST. For
optimization, we use ADAM [26,27] with learning rate 10−3,
momenta β1 = 0.9 and β2 = 0.999, ε = 10−8, and λ = 0. The
choice of the optimizer does not affect the above presented
derivations. Network implementations were done in PYTORCH

[28].

B. Multiple information encodings of the XOR problem

We first study an adaptation of the XOR problem as a
nonlinearly separable Gaussian mixture distribution. We make
use of two conceptual advantages of this XOR task: First,
knowing the exact input distribution allows us to focus on the
internal information processing within the network. Second,
the fact that each class is itself a mixture distribution allows
us to trace the class-conditional correlations in two alternative
forms, corresponding to two different statistical representa-
tions of class membership, which isolate different statistics
of the input, respectively, the mean and the covariance. We
find that while the task can be solved for both representations,

043143-6

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

FIG. 2. Information propagation in ReLU networks for the XOR problem. (a) The distribution of input data is modeled as a Gaussian
mixture. Data samples x(d) (blue and green dots) are assigned to class labels t = ±1 based on the respective mixture component. (b),
(c) Distribution of the network output for random (b) and trained (c) parameters. Class-conditional distributions (solid curves) are determined
as a superposition of the propagated mixture components (dashed curves) as in Eq. (26) and empirical estimates (blue and green histograms)
are obtained from the test data. Since networks are trained on class labels t = ±1, the classification threshold is set to y = 0 (gray lines). Other
parameters: φ = ReLU, depth L = 1, width N = 10; trained network in (c) achieves P = 93.82% performance compared to Popt = 97.5%.

they correspond to different local minima of the empirical loss
landscape.

1. Problem setup as a Gaussian mixture

Our adaptation of the XOR problem uses real-valued in-
stead of binary inputs and describes the input distribution as a
Gaussian mixture of four components, illustrated in Fig. 2(a).
For the class label t = +1, we choose the mean values of its
two components ± as μt=+1, ±

x = ±(0.5, 0.5)ᵀ; for t = −1,
we use μt=−1, ±

x = ±(−0.5, 0.5)ᵀ. Covariances are isotropic
throughout with �t, ±

x = 0.05 I and the input distribution

p(x, t) = p(t)
∑
±

p± N
(
μt, ±

x , �t, ±
x

)
(x)

weighs all components equally p(t) = p± = 1
2 . A data sample

x(d) is assigned a target label t (d) ∈ {±1} based on the mix-
ture component it is drawn from. From the geometry of the
problem follows that the optimal decision boundaries coincide
with the axes in data space [Fig. 2(a)], allowing us to calculate
the optimal performance Popt = 97.5%. We use training and
test data sets of sizes ntrain = 105 and ntest = 104, respectively.

2. Accuracy of internal information processing in terms
of correlation functions

Given the exact input distribution for this problem, we
trace the transformation of mean and covariance predicted
by Eqs. (20) and (21) for each mixture component (t, ±)
separately, obtaining

ptheo(y) =
∑

t

p(t)
∑
±

p± N
(
μt, ±

y , �t, ±
y

)
(y), (26)

where μt, ±
y = gμ(μt, ±

x , �t, ±
x ; θ, φ) and �t, ±

y = g� (μt,±
x ,

�t, ±
x ; θ, φ) are functions of the input statistics, the network

parameters, and depend on the choice of activation function.
In Fig. 2 we compare this theoretical result to an empiri-
cal estimate of the output distribution pemp(y), given as a
histogram obtained from the test data. We test the validity
of the statistical model for both an untrained network with
random weight initialization [Fig. 2(b)] and a trained network
[Fig. 2(c)].

The untrained network produces an output distribution of
complex shape composed of superimposed close-to Gaussian
distributions, each corresponding to one component, as shown
in Fig. 2(b). Training the network reshapes the output dis-
tribution such that the class-conditional distributions p(y|t)
become well separated by the threshold at y = 0, as shown in
Fig. 2(c). The overlap between these two distributions around
the threshold corresponds to the classification error. Qualita-
tively, theory and simulation agree well for both random and
trained networks. These results apply for different activation
functions φ [see Fig. 8 in Appendix D for φ(z) = z + α z2].

To quantify the alignment of theory and simulation, we
compute the Kullback-Leibler divergence DKL between the
empirical estimate pemp(y) and the theoretical result ptheo(y),
considering the empirical distribution pemp(y) as the refer-
ence. To account for the variability of output distributions
across different network realizations, this quantity is normal-
ized by the entropy H of the empirical distribution pemp(y),
yielding D̂KL(pemp‖ptheo) = DKL (pemp‖ptheo)/H (pemp).

We average D̂KL(pemp‖ptheo) across 50 different network
realizations, for random [Fig. 3(a)] and trained [Fig. 3(b)]

FIG. 3. Deviation between theoretical and empirical output dis-
tribution for (a) random and (b) trained networks, measured across 50
different network realizations using the normalized Kullback-Leibler
divergence D̂KL(pemp‖ptheo). On average, the trained networks
achieve performance values of P = 97.00% ± 0.05% compared to
Popt = 97.5%. Networks were trained to perform the XOR task de-
scribed in Sec. IV B 1. Other parameters: φ = ReLU.

043143-7

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

networks. In both cases, the deviation between theory and
simulation is generally small, but increases mildly with the
network depth L as approximation errors accumulate across
network layers. For random networks, the deviations are gen-
erally small with a slight decrease of the deviation for wider
networks, in agreement with the central limit theorem as
discussed in Sec. III B. For trained networks with thus cor-
related parameters, there is an overall increase of deviations
between theory and simulation. Nonetheless, this increase
remains modest, showing that the theory continues to be
applicable for networks with trained, and thus nonrandom,
parameters. Again these results apply for different activation
functions φ [see Fig. 9 in Appendix D for φ(z) = z + α z2].
When evaluating the expressions for ReLU, one needs to be
careful with the numerics due to the appearing error functions.

3. Different information coding paradigms and their relations

In the previous section, we have shown that the mapping
implemented by the network can be described as a mapping
of correlation functions [see Eq. (22)]. On the level of data
correlations, it directly follows that the network’s expressivity
with respect to a given task depends on two properties: (1)
the ability of the network architecture to implement a desired
mapping of data correlations from its input to its output;
(2) the way in which information about class membership is
represented by data correlations in the input.

A complete study of the first property would be provided
by fully describing the space of possible mappings, which
is challenging in general. However, the forward mapping of
cumulants we have obtained in Sec. III B allows us to probe
this space experimentally, and it provides a path to more
systematic studies of network expressivity (see our remarks
on statistical receptive fields in Sec. V).

In this section, we study the second property by inves-
tigating two different information representations: (A) the
class membership is represented by different means between
classes, while the covariances and all higher-order cumulants
are identical; (B) the class membership is represented by dif-
ferent covariances between classes, while the means and all
higher-order cumulants are identical. Accordingly, these two
representations are called mean coding (A) and covariance
coding (B) in the following. While each of these two settings
confines the class membership to one particular cumulant
order, the more general case is that class membership is rep-
resented by various orders of statistical moments. In that case,
the network may make use of this duplicate information to
maximize performance.

To be able to compare these settings, in either case we
train models on a single task defined via a single data dis-
tribution, but present different statistical representations of
the data. We use the statistical model corresponding to the
network described in Sec. III D, limiting input correlations
to mean and covariance by setting higher-order cumulants to
zero. We take the binary XOR problem (see Sec. IV B 1)
which can be cast into either information representation in
a natural way: For mean coding (A), we provide to the
network both the class labels t and the specific mixture
component ± from which a sample was drawn, yielding
four sets of statistics {μm

x , �m
x }m=(t,±) with different means

but identical covariances. For covariance coding (B), only
the class label t is provided to the network, yielding two
sets of statistics {μm

x , �m
x }m=(t), for which the covariances

�t=±1
x = (0.3 ±0.25

±0.25 0.3

)
differ between the two classes, while

their means are the same [see Fig. 4(a)]. In both cases,
all higher-order cumulants of the component distributions
m = (t,±) and m = (t), respectively, are set to zero. Note
that for mean coding the class distributions p(x, t = ±1) =∑

± p± N (μt, ±
x , �t, ±

x)(x) indeed include higher-order cumu-
lants. The different sets of input statistics {μm

x , �m
x }m=(t,±) (A)

and {μm
x , �m

x }m=(t) (B), respectively, define different statisti-
cal models for mean and covariance coding.

We compare these two statistical representations A and
B of the network to the network trained directly on batches
of samples; the latter we refer to as sample coding in the
following. Sample coding can be considered as the case where
potentially all statistical moments of the data are accessible to
the network. Our goal is to address the following questions:
First, which statistical representation most closely matches
the information representation used by a network trained on
data samples? Second, is there a difference in performance
between information representations; in particular, can the
network equivalently use the information provided by either
mean or covariance coding? Finally, does the network make
use of duplicate information in different cumulant orders to
improve performance in the case of sample coding?

To answer these questions, we optimize models until con-
vergence using either representation. We then switch to a
different representation, continuing optimization for the same
number of steps, and observe the stability of the previously
found solution. Each experimental setup is repeated with 102

different weight initializations. Results are shown in Fig. 4
for three different coding combinations, where we plot both
the loss and the magnitude of change ||
θ ||22 of the model
parameters.

We find that after initial optimization all three models
correspond to networks with at least P = 91% performance,
so training converges in all cases and the networks imple-
ment viable solutions before the switch. Thus, the behavior
after the switch indicates how the found solution is affected
by changing the statistical representation. Furthermore, we
observe that immediately after the switch from covariance
to mean coding, ||
θ ||22 jumps to values similar to the ini-
tial training steps [Fig. 4(b)]. This indicates a near complete
change of the model, which suggests that mean and covariance
coding induce fundamentally different solutions. In contrast,
the jump is modest when switching from covariance to sample
coding [Fig. 4(c)] and nonexistent when switching from mean
to sample coding [Fig. 4(d)], suggesting that those different
solutions coexist in the true loss landscape of the network
model. Thus, we find that the network utilizes the presented
information in different ways for the two representations, as
expected based on the information flow in these networks,
derived in Sec. III B.

In particular, the case of covariance coding highlights the
importance of a nonlinear activation function when the dis-
criminating information is not contained in the class means.
Since classification is based on different mean values in the
network output, the difference in covariance for each class

043143-8

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

FIG. 4. Mean and covariance coding. (a) Data distributions of XOR task. Left: covariance coding; class membership (blue and green
ellipses) is encoded in the covariance alone. Right: mean coding; the two individual Gaussian components of each class (both blue circles and
both green circles) differ in their means, while having the same covariance. (b)–(d) Evolution of network loss R [Remp, MSE Eq. (25) for training
the network model, RMSE Eq. (13) for the statistical model] and change of network parameters ||
θ ||22 in each training step: the first T1 = 2000
training steps train one model, starting from random parameters θ . The model representation is changed at T1, starting from parameters θ (T1)
obtained in the preceding period. The change of network parameters is evaluated every 10 training steps ‖
θ (T)‖2

2 = ‖θ (T) − θ (T − 10)‖2
2.

Shaded areas show the typical range, based on lower and upper quartiles across 102 network realizations. Solid curves show the behavior of
a single network realization. (b) First period: statistical model with covariance coding; second period: statistical model with mean coding.
(c) First period: statistical model with covariance coding; second period: network model. (d) First period: statistical model with mean coding;
second period: network model. Training parameters: ntrain = 104, 2 epochs. Other parameters: φ(z) = z + α z2, depth L = 1, width N = 10.

needs to be transferred to the mean. This information transfer
is mediated by the nonlinearity φ; for the case φ(z) = z +
α z2 used in Fig. 4, we have the particularly simple transfer
function

μyl , i = μzl , i + α
(
μzl , i

)2 + α �zl , ii (27)

from covariances to means. Here, only diagonal entries of
the covariance enter, while the input covariances �t=±1

x =(0.3 ±0.25
±0.25 0.3

)
differ in their off-diagonal entries. The in-

formation transfer from off-diagonal to diagonal entries is
mediated by the affine transformation [see Eq. (14)] prior to
the activation function. In this way, we can track how infor-
mation flows into the mean as it is transformed by successive
network layers.

In summary, we find that for this task the network can
effectively utilize the information presented by either mean
or covariance coding, both representations leading to different
solutions with comparable performance. Sample coding tends
to yield similar solutions as mean coding, implying that the
network makes use of duplicate information present in higher-
order moments of the data samples from each class.

C. Essential data correlations of the MNIST data set

We consider in this section the MNIST data set [22], con-
sisting of 10 classes of 28 × 28 images. This data set is highly
structured: if one approximates each class by a multivariate
Gaussian, the resulting samples are already visually recogniz-
able [Figs. 5(a) and 5(b); see Appendix E for further details).
Our goal is to use the theory developed in previous sections to
quantify this observation, in a matter which can be generalized
to different data sets and different sets of input cumulants. We
also argue that truncation of cumulants in the input layer has
the largest impact, and in the process validate our theory on a
nontrivial task.

FIG. 5. First- and second-order correlations of MNIST. (a) Three
example data samples showing the digit 3 from the MNIST training
data set. (b) Data samples showing the digit 3, drawn from the
Gaussian approximation of the input distribution. (c) Classification
performance on the MNIST test data set for different input encod-
ings. Network training consistently achieves performance values of
P ≈ 94% or more (yellow), while performance of the corresponding
statistical model is 3.3% ± 0.6% lower (green). Training networks
on Gaussian input samples yield a comparable performance differ-
ence (red). In all cases, performance is evaluated on the MNIST test
data set. Error bars show the standard deviation across 102 differ-
ent network realizations. Other parameters: φ(z) = z + α z2, depth
L ∈ [1, 2, 3, 4], width N = 100.

043143-9

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

Concretely, we proceed as follows: when optimizing the
parameters θ∗ of the statistical model, we restrict the data
statistics to a particular set of cumulants {G(n)

x }n=1,...,n̂ and
compare the achieved performance to that of the network
trained on samples y = g(x; θ∗). The difference in perfor-
mance is then indicative of the importance of the cumulants
we kept. We employ one-hot encoding, making the network
output dout = 10 dimensional.

As a baseline, we first train network models on both
the MNIST data set [Fig. 5(a)] and the corresponding
Gaussian samples [Fig. 5(b)]. The latter case limits the in-
formation that can be extracted by the input layer to the
class-conditional means μt

x and covariances �t
x. In both

cases, networks are trained with the standard empirical loss
[Eq. (25)]; in particular, this allows inner network layers
to make use of cumulants of any order. With respect to
classification performance, we find that training on Gaus-
sian samples yields a performance that is lower by
P �
2.4% ± 0.7% [Fig. 5(c)]: a difference we can ascribe to
the removal of higher-order cumulants in the data distri-
bution. Based on the modest magnitude of this difference,
we conclude that data mean and covariance are already
highly informative for these data and account for about P ≈
91%.

We next train the corresponding statistical model [Eq. (22)]
on the Gaussian approximation of MNIST [Fig. 5(b)]. Com-
pared to the network model trained on the Gaussian samples
corresponding to the same data distribution, we find only
slightly lower performance, by about 0.9 ± 0.4% [Fig. 5(c)],
suggesting that the statistical model given by Eq. (22) is a
good representation for the information processing in internal
network layers. The fact that most of the performance drop
with respect to standard training on MNIST is due to the Gaus-
sian approximation of the input data indicates the importance
of processing higher-order cumulants by the input layer. In the
next section, we show with an illustrative example how these
can be included into the theory.

D. Including higher-order correlation functions
in the input layer

So far we have studied class-conditional means μt
x and

covariances �t
x of the input data; however, these two statistics

may not always be informative. It is in fact easy to con-
struct a low-dimensional task with two classes t = ±1, where
both class-conditional means and covariances of the data are
identical, μt=−1

x = μt=+1
x , �t=−1

x = �t=+1
x , thereby convey-

ing no information regarding the class membership [Figs. 6(a)
and 6(b)]. Classification in such cases must therefore rely
on higher-order statistics. For the example in Fig. 6, since
third-order cumulants differ between classes (G(3), t=−1

x =
−G(3), t=+1

x), we expect their inclusion into the statistical
model to be sufficient for solving the task. We here demon-
strate that such higher-order cumulants can indeed be treated
by our approach; in particular, we validate the statement made
in Sec. III C that it suffices to consider higher-order cumulants
in only the first layer.

The input distribution for this task is defined as a Gaus-
sian mixture of four components, illustrated in Figs. 6(a)
and 6(b) (details in Appendix F). As expected, training the

FIG. 6. Information extracted from higher-order correlations.
(a) The distribution of input data is modeled as a Gaussian mix-
ture. Data samples x(d) (blue and green dots) are assigned to class
labels t = ±1 based on their respective mixture component. The two
classes have zero mean and the same covariance. (b) Projection of
data samples to the x1 axis (histograms), which corresponds to the
marginalization of the input distribution with respect to x2 (solid
lines), illustrating the different weighing of the mixture components.
(c) Classification performance for different model choices. Network
training consistently achieves performance values of P ≈ 96% or
more (yellow). Optimizing the statistical model gstat ({G(n)

x }n=1,2, θ)
that considers only the first- and second-order correlations (green)
results in performance values corresponding to chance level (dotted
line). However, including the third-order correlations into the statis-
tical model g̃stat ({G(n)

x }n=1,2,3,4, θ) nearly bridges this gap (red). In all
cases, performance is evaluated on a test data set. Error bars show
the error of the mean of performance across 102 different network
realizations. Other parameters: φ(z) = z + α z2, depth L = 4, width
N = [10, 20, 50, 100].

network model yields near-optimal performance values, while
a statistical model gstat ({G(n)

x }n=1,2, θ) that considers only the
class-conditional means μt

x and covariances �t
x fails to solve

the task, yielding chance-level performance [Fig. 6(c)]. This
performance gap is nearly bridged when we include the third-
order input cumulants G(3)

x [via Eq. (C19)] in the first layer
of the statistical model g̃stat ({G(n)

x }n=1,2,3,4, θ). The activation
function φ allows information in G(3)

x to be transferred to
lower-order cumulants, which are then processed by subse-
quent layers in the manner described in previous sections,
facilitating different means G(1)

y in the output of the statistical
model.

043143-10

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

FIG. 7. Classification performance on CIFAR-10. Training the
statistical model on Gaussian statistics (green) consistently achieves
higher performance values than training network models on data
samples (yellow). In both cases, performance is evaluated on the
CIFAR-10 test data set. Error bars show the standard deviation across
10 different network realizations. Other parameters: φ(z) = z + α z2,
depth L = 2, width N ∈ [50, 100, 200].

E. High dimensionality of input data justifies Gaussian
description of fully connected deep networks

We study the CIFAR-10 data set [29], consisting of 10
classes of 32 × 32 images with 3 color channels. Compared
to MNIST, we expect two antagonistic effects. On the one
hand, since images within one class of CIFAR-10 are signif-
icantly more heterogeneous, we expect the class-conditional
distributions to be more complex, and consequently to require
higher-order cumulants to accurately represent its statistical
structure. On the other hand, due to the larger input di-
mensionality N0 = 3072 compared to N0 = 784 for MNIST,
higher-order cumulants are more strongly suppressed in the
input layer (see Sec. III B). To check how these two effects
interplay in feed-forward networks, we employ the methods
presented in previous sections to restrict training to certain
cumulants, similar as in Sec. IV C.

We train network models on the CIFAR-10 data set and
compare these to the statistical model trained on the Gaussian
approximation of CIFAR-10 (Fig. 7). In both cases, perfor-
mance is evaluated on the CIFAR-10 test data set. We find that
network models trained on data samples achieve performance
values of P = 34.8% ± 1.4%. In contrast to MNIST, the sta-
tistical model trained on the Gaussian statistics consistently
achieves higher performance values of P = 37.6% ± 1.3%.
These results are directly linked to the two aforementioned
effects: They indicate that due to the large input dimen-
sionality, networks predominantly process only the Gaussian
statistics; the statistical model therefore continues to provide
a good representation of the network. Moreover, estimates
of the Gaussian statistics are more accurate in the statistical
model (averaged over the full training set of 50 000 images)
compared to training on data samples (averaged over mini-
batches of 100 images), possibly explaining the slightly higher
performance values. Importantly, although the achieved per-
formance values are far below values reported for other
architectures such as convolutional ResNets [30], they are
representative for fully connected feed-forward networks [12].
The difference between the architectures lies in the extracted
statistical information. For high-dimensional input data, the
here presented theory predicts that fully connected feed-
forward networks are limited to Gaussian statistics, which can

only partly capture the statistical structure of more complex
data sets such as CIFAR-10. Hence, the presented decomposi-
tion of a network in terms of cumulants allows us to relate the
power of network architectures to the processing of statistical
information contained in the data.

V. DISCUSSION

The question of how neural networks process data is fun-
damentally the question of how information is encoded in
the data distribution and subsequently transformed by the
network. We here present an analytical approach, based on
methods from statistical physics, to study the mapping of
data distributions implemented by deep feed-forward neural
networks: we parametrize the data distribution in terms of
correlation functions and derive their successive transforma-
tions across layers. We show that the initial network layer
effectuates the extraction of information from higher-order
correlations in the data; for subsequent layers, a restriction
to first- and second-order correlation functions (mean and co-
variance) already captures the main properties of the network
computation. This reduction of the bulk of the network to a
nonlinear mapping of a few correlation functions provides an
attractive view for further analyses. It relies on the assumption
of sufficiently wide layers to apply the central limit theorem,
but, in practice, we find that the approximations are useful
even for narrow networks.

We validate these results for different data sets. We first
investigate an adaptation of the XOR problem that is purely
based on first- and second-order cumulants. Despite the non-
linear transformations in each layer giving rise to higher-order
correlations, the network solutions to this task can largely be
described in terms of transformations solely between mean
and covariance of each class. We then consider the MNIST
database: we show that network solutions based on empirical
estimates for mean and covariance of each class capture a
large amount of the variability within the data set, but still
exhibit a non-negligible performance gap in comparison to
solutions based on the actual data set. We discuss how this
performance difference results from the omission of higher-
order correlations. We then introduce an example task where
higher-order correlations exclusively encode class member-
ship, which allows us to explore their role in isolation. Finally,
we show that for high-dimensional input data such as CIFAR-
10, the first layer of fully connected networks predominantly
extracts the Gaussian statistics. As a consequence, the infor-
mation processing in these networks is well described by the
Gaussian theory.

Limitations. The dimensionality N0 of the data may limit
the applicability of the presented approach to low orders n
since cumulants of order n are tensors with Nn

0 entries. We
note, however, that there exist methods to ease the compu-
tational cost of higher-order cumulants in large dimensions:
for example, one can make use of the inherent symmetries
in these tensors, as well as in the theory itself. The applica-
tion of such methods to our framework remains a point for
future work. A parametrization of a probability distribution
in terms of cumulants, moreover, needs to be chosen such
that it maintains positivity of the probability density function.

043143-11

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

Conserving this property implies constraints for truncating
cumulant orders, which require further investigations.

The presented framework and its perturbative methods
naturally apply to polynomial approximations of activation
functions. Although networks with polynomial nonlinearity
are, in principle, not capable of universal function approxima-
tion [31–33], this is not an issue for the classification tasks we
consider. To obtain illustrative analytical expressions for the
mixing of correlation functions, we chose to demonstrate the
approach with a quadratic activation function. Nonpolynomial
and even nondifferentiable activation functions can, however,
also be dealt with in our framework using Gram-Charlier
expansions that are detailed for the example of the ReLU
activation in Appendix C. While we here mostly focus on
the mean and covariance, we also show how to generalize the
results to higher-order cumulants.

Relation to kernel limit of deep networks. In this paper
we study individual networks with specific parameters θ .
There is a complementary approach that studies ensembles
of (infinitely) wide networks with random parameters: Poole
et al. [15] expose a relation between the Lyapunov exponents
and the depth to which information propagates in randomly
initialized deep networks. They find the regime close to chaos
beneficial for information propagation. We similarly find that
the depth scale of information propagation controls the propa-
gation of the Gaussian statistics across data samples studied in
the current work, if network parameters are drawn randomly
(see Appendix G, Fig. 10). Furthermore, random network
parameters are central to studying training as Bayesian in-
ference [34]: independent Gaussian priors on the network
parameters render Bayesian inference exact on the result-
ing Gaussian process [7,12,35,36]. The works [9,37–39] use
methods similar to ours to compute finite-width corrections
and corrections arising from training with stochastic gradient
descent. These approaches consider distributions over net-
work parameters θ . The statistics of the data in this view
enters in the form of the pairwise overlaps

∑
i xi x′

i between
pairs of patterns x and x′. In the large data limit, the data
statistics can moreover be described by a density p(x), whose
properties shape the eigenfunctions φi of the kernel k in the
form

∫
k(x, x′) φi(x′) p(x′) dx′ = λi φi(x) [14], Sec. 4.3. In

contrast, in this work we study the transformation of an input
distribution p(x) by a network with fixed parameters θ . The
focus on individual networks rather than ensembles allows us
to directly take into account the internal statistical structure of
data samples, for example, in the form of the mean μx,i and
covariances �x,i j for individual pixels i and j in images.

Related works. Describing data and network activity
in terms of correlations was initially explored by Deco
and Brauer [40] on the particular architecture of volume-
preserving networks. They derived expressions of the output
in terms of its correlations as well as training rules that aim to
decorrelate given input data. The work we present here differs
in that our goal is not to impose a specific statistical structure
on the network output, but to relate the correlations of the
input and output distributions and thereby obtain a description
of the information processing within the network.

While we do show that these distributions are not ex-
actly Gaussian, that the networks can utilize higher-order
correlations in the hidden layers, and how these contribu-

tions could in principle be computed, we focus mostly on
self-consistently tracking the distributions in Gaussian ap-
proximation. This is because, as we show, this approximation
is tractable while staying accurate also for trained networks
and capturing the majority of the test accuracy in our exam-
ples. That a Gaussian approximation is surprisingly effective
has also been argued in a recent line of works using teacher-
student models with realistic data structure [41–43]. We also
derive conditions under which a Gaussian approximation of
the activity in the inner layers of a deep network is consistent
in the limit of wide layers: Scaling of weight amplitudes
wi j ∝ N− 1

2 , weak pairwise correlations ci j = O(N−1), as well
as an approximate pairwise orthogonal decomposition of the
previous layer’s covariance matrix by the row vectors of the
following layer. Under these conditions we show that cu-
mulants of order higher than two are at most O(N− 1

2). Our
approach is inspired by and analogous to the Gaussian equiv-
alence property proposed by [41]; in particular, we also use
as the central argument an expansion of higher-order cumu-
lants caused by weak pairwise correlations. Our result differs,
though, by us treating layered networks instead of random
feature maps embedding a low-dimensional manifold in [41].
Other works which are based on a Gaussian approximation of
the representation in each layer are [44] using general deep
networks, [45] focusing on ResNets, and [46] considering the
case of GANs. Going beyond random weights, other works
study dimensionality reduction and decorrelation in both ran-
dom deep networks and trained deep belief networks [47],
explicitly analyzing the effects of weak correlations among
weights [48]. Finally, a pedagogical text focusing on field
theory for deep neural networks has recently been published
[49].

Outlook. Tracing transformations of data correlations
through layers of a neural network allows the investigation of
mechanisms for both information encoding and processing; in
this manner, it presents a handle towards interpretability of
deep networks. The availability of tractable expressions de-
scribing the transformations of data correlations within neural
networks is therefore an interesting prospect for future work
seeking to dissect how networks learn and perform tasks. In
this context, the theory we propose assumes data statistics
of the input distribution p(x) to be known and exposes how
statistical features of the data are transformed to generate the
output, with the goal of shedding light onto the networks’
functioning principles.

Another natural application of the proposed framework
is the identification of essential correlations in the data. In
that scenario, we do not need the exact distribution p(x), but
only sufficiently accurate estimates of some statistics of x that
can be obtained from the training data. By manipulating the
information available to the model during training, we expose
different information encodings the network can employ to
solve the same task. We believe this approach could be used
to identify data statistics required to solve a given task.

More complex data sets, such as CIFAR-10, require richer
network architectures than fully connected feed-forward net-
works to achieve high performance. For example, applying
the presented approach to ResNet-50 [50] would require
the extension to convolutional network layers and skip

043143-12

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

connections. However, since these are equivalent to linear
layers with weight matrices of a particular shape [13], they
can straightforwardly be included in the framework.

Another future direction targets expressivity of deep net-
works: by reversely tracing the data correlations through the
network, from target to data, one may ask which input dis-
tributions are mapped to a given output distribution, in effect
constructing layer-resolved, statistical receptive fields for each
target. Expressing these receptive fields in terms of data cor-
relations may also be useful for studying how the complexity
of data distributions is reduced by deep neural networks.

ACKNOWLEDGMENTS

We are grateful to C. Merger and A. Kurth for help-
ful discussions. We thank P. Bouss for feedback on an
earlier version of the manuscript. This work was partly sup-
ported by the German Federal Ministry for Education and
Research (01IS19077A and 01IS19077B), the Excellence Ini-
tiative of the German federal and state governments (ERS
PF-JARA-SDS005), and the Helmholtz Association Initiative
and Networking Fund under Project No. SO-092 (Advanced
Computing Architectures, ACA).

APPENDIX A: HIGHER-ORDER CUMULANTS
OF POSTACTIVATIONS CAUSED BY WEAKLY

CORRELATED PREACTIVATIONS

We study how weak correlations between preactivations
affect higher-order cumulants of the postactivations. Assume
preactivations x, y are zero-mean Gaussian distributed and
weakly correlated. Let φ be a piecewise differentiable acti-
vation function. The covariance matrix of x and y be C =(a c

c a

)
. For simplicity, we denote 〈◦〉 := 〈◦〉(x,y)∼N (0,C). Then

by Price’s theorem [51–53, Appendix A]

∂

∂c
〈 f (x)g(y)〉 = 〈 f ′(x)g′(y)〉.

This can be used to expand 〈 f (x)g(y)〉 for small c as

〈 f (x)g(y)〉 = 〈 f (x)g(y)〉c=0 + 〈 f ′(x)g′(y)〉c=0 c + O(c2)

= 〈 f (x)〉〈g(y)〉 + 〈 f ′(x)〉〈g′(y)〉 c + O(c2). (A1)

This expression corresponds to Eq. (A4) in [41], but Goldt
et al. use a different approach than Price’s theorem. In the
expression in [41] one needs to replace 〈u f (u)〉 = 〈 f ′(u)〉),
which holds since they assume 〈u2〉 = 1.

Next, we consider the centered variables

f̃ (x) := f (x) − 〈 f (x)〉
and correspondingly for g, one gets

〈 f̃ (x)g̃(y)〉 = 〈 f ′(x)〉〈g′(y)〉 c + O(c2).

We may generalize this property to expectation values of more
than two functions f , g:

Fn(x) :=
〈

n∏
k=1

f̃k (xk)

〉
. (A2)

By the marginalization property of Gaussian distributions, the
joint distribution of any subset of xi is Gaussian distributed,

too, where the covariance matrix is the corresponding sector
of the matrix Ci j = 〈〈xix j〉〉. Therefore, for any i, j we define
the function

Fn(x\{xi, x j}) =
〈

n∏
k=1

f̃k (xk)

〉
(xi,x j)

= 〈 f̃i(xi) f̃ j (x j)〉(xi,x j)

∏
k\{i, j}

f̃k (xk).

Applying (A1) to the first term yields

Fn(x\{xi, x j}) = [ci j 〈 f ′
i (xi) f ′

j (x j)〉(xi,x j),ci j=0 + O
(
c2

i j

)]
×
∏

k\{i, j}
f̃k (xk). (A3)

Now take the expectation also across the remaining variables
x\{xi, x j} with probability p(x\{xi, x j}). We may consider
p(x1, . . . , xN) = p(xi, x j |x\{xi, x j}) p(x\{xi, x j}) and use (A3)
for the conditional expectation value over xi, x j with regard to
p(xi, x j |x\{xi, x j}), so that it follows

〈Fn(x\{xi, x j})〉x\{xi,x j }

=
〈[

ci j f ′
i (xi) f ′

j (x j) + O
(
c2

i j

)] ∏
k\{i, j}

f̃k (xk)

〉
x,ci j=0

.

The pair (i, j) has been chosen arbitrary. The remaining fac-
tors

∏
k\{i, j} f̃k (xk) can now be expanded in a similar manner,

where all remaining k\{i, j} need to be paired. Any such
pairing yields nonzero contributions. Together one therefore
has〈

Fn(x)
〉
x
=
∑
σ∈�

cσ (1)σ (2) 〈 f ′
σ (1)(xσ (1))〉〈 f ′

σ (2)(xσ (2))〉

× . . . cσ (n−1)σ (n) 〈 f ′
σ (n−1)(xσ (n−1))〉〈 f ′

σ (n)(xσ (n))〉
+ O

(
c

n
2 +1
◦◦
)
, (A4)

where
∑

σ∈� sums over all disjoint pairings of indices. (This
expression corresponds to A16 in [41], apart from minor
typos; the factors bi seem to be missing, p should be m,
and we interpret the upper case of their A16 to be meant
as b1 . . . bm

∑
σπ� mσ1σ2 . . . mσm−1σm .) This expression is also

consistent with Wick’s theorem, to which it needs to reduce in
the case of an identity mapping f (x) = x.

The expansion (A4) holds for arbitrary n. For any n, the
result is correct up to terms of order O(c

n
2). All cumulants of

order n � 3 thus vanish at the given order O(c
n
2). This can be

exemplified on the fourth order (dropping the arguments x for
brevity)

〈〈 f̃1 f̃2 f̃3 f̃4〉〉 = 〈 f̃1 f̃2 f̃3 f̃4〉
− 〈 f̃1 f̃2〉 〈 f̃3 f̃4〉
− 〈 f̃1 f̃3〉 〈 f̃2 f̃4〉
− 〈 f̃1 f̃4〉 〈 f̃2 f̃3〉. (A5)

043143-13

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

The first line on the right-hand side, according to (A4), is

〈 f̃1 f̃2 f̃3 f̃4〉 = c12 〈 f ′
1〉 〈 f ′

2〉 c34 〈 f ′
3〉 〈 f ′

4〉
+ c13 〈 f ′

1〉 〈 f ′
3〉 c24 〈 f ′

2〉 〈 f ′
4〉

+ c14 〈 f ′
1〉 〈 f ′

4〉 c23 〈 f ′
2〉 〈 f ′

3〉 + O(c3).

Expanding each of the three negative terms on the right-hand
side of (A5) with help of (A4) yields, for example, for the first
of them

−〈 f̃1 f̃2〉 〈 f̃3 f̃4〉 = −c12 〈 f ′
1〉 〈 f ′

2〉 c34 〈 f ′
3〉 〈 f ′

4〉 + O(c3),

which precisely cancels the corresponding term in (A5) at
the given accuracy O(c3). Analogous results hold at any even
order (odd orders vanish for the centered variables), so that we
find 〈〈

n∏
k=1

f̃k (xk)

〉〉
= O

(
c

n
2 +1). (A6)

We also need to consider the case that indices in (A5)
repeat, for example, 〈〈 f̃1 f̃1 f̃2 f̃2〉〉. In general, assume we
have r different indices j1, . . . , jr among the n indices and
want to compute the nth cumulant for n > r. Within a set
of repeated variables correlations are of order O(1) instead
of O(c). In the expansion (A4) variables with repeated in-
dices must be treated as a single variable. For the given
example, define gi := f̃ 2

i , i = 1, 2, and centered variables
g̃i := f̃ 2

i − 〈 f̃ 2
i 〉. One then has with (A4)

〈g̃1 g̃2〉 = c12 〈g′
1〉 〈g′

2〉 + O(c2), (A7)

which is also the second cumulant because the g̃ are centered.
We then expand the fourth cumulant with repeated indices
analogous to (A5) as

〈〈 f̃1 f̃1 f̃2 f̃2〉〉 = 〈 f̃1 f̃1 f̃2 f̃2〉
− 〈 f̃1 f̃1〉 〈 f̃2 f̃2〉
− 〈 f̃1 f̃2〉 〈 f̃1 f̃2〉
− 〈 f̃1 f̃2〉 〈 f̃1 f̃2〉. (A8)

The fourth moment in the first line, using the definitions of g
and g̃ above as well as (A7), is

〈 f̃1 f̃1 f̃2 f̃2〉 = 〈g1 g2〉
= 〈g̃1 g̃2〉 + 〈g1〉〈g2〉
(A7)= c12 〈g′

1〉 〈g′
2〉 + 〈g1〉〈g2〉 + O(c2).

Combined with (A8) one has

〈〈 f̃1 f̃1 f̃2 f̃2〉〉 = c12 〈g′
1〉 〈g′

2〉 + O(c2),

where we dropped all terms of order O(c2), such
as 〈 f̃1 f̃2〉 〈 f̃1 f̃2〉 = O(c2

12) and used that 〈 f̃1 f̃1〉 〈 f̃2 f̃2〉 =
〈g1〉〈g2〉.

Now consider that r is odd, such as in

〈〈 f̃1 f̃2 f̃2 f̃3〉〉 = 〈 f̃1 f̃2 f̃2 f̃3〉
− 〈 f̃1 f̃2〉 〈 f̃2 f̃3〉
− 〈 f̃1 f̃2〉 〈 f̃2 f̃3〉
− 〈 f̃1 f̃3〉 〈 f̃2 f̃2〉. (A9)

The fourth moment then is

〈 f̃1 f̃2 f̃2 f̃3〉 = 〈 f̃1 g2 f̃3〉
= 〈 f̃1 g̃2 f̃3〉︸ ︷︷ ︸

O(c2)

+〈g2〉 〈 f̃1 f̃3〉

(A7)= 〈g2〉 〈 f ′
1〉〈 f ′

3〉 c13 + O(c2).

Applied to (A9), we have

〈〈 f̃1 f̃2 f̃2 f̃3〉〉 = 〈g2〉 〈 f ′
1〉〈 f ′

3〉 c13

− 〈 f̃1 f̃3〉 〈 f̃2 f̃2〉 + O(c2)

= O(c2),

where the terms ∝c cancel exactly. These two examples show
the structure of the expansion: If we have r different indices
j1, . . . , jr , the nth cumulant for n > r of these variables will
be of the order in c that equals the number of pairs to join all
different indices. So together (r even or odd) we get〈〈

n∏
k=1

f̃ jk (x jk)

〉〉
= O

(
c� r

2 �). (A10)

This expression describes the scaling of the higher-order
cumulants of postactivations with weak correlations of the
preactivations.

APPENDIX B: WEAKLY CORRELATED GAUSSIAN
NETWORK MAPPING

The application of a nonlinear activation function φ in
each network layer generates higher-order cumulants from
Gaussian distributed preactivations, as discussed in Sec. III B.
We here derive conditions under which higher-order cumu-
lants G(n)

zl of the preactivations zl beyond mean and covariance
on expectation scale down with the layer width N . Conse-
quently, these become negligible for wide networks where
N � 1.

We apply the considerations in the previous Appendix A of
weakly correlated Gaussian variables to the network mapping.
Preactivations in layer l are given by

zl
i =

N∑
a=1

W l
ia yl−1

a + bl
i, (B1)

which then produce postactivations

yl
i = φ

(
zl

i

)
. (B2)

Assume the preactivations zl
i are Gaussian and weakly corre-

lated to order ε

〈〈ziz j〉〉 i �= j= O(ε). (B3)

043143-14

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

We want to derive conditions under which it then follows that
also preactivations zl+1

i in the next layer have this property. By
induction through the layer index, one then has established a
condition under which the neglect of non-Gaussian cumulants
in the inner layers of the network is justified. To this end, we
define centered variables

z̃ := z − 〈z〉
as well as

y = f (z̃) := φ(〈z〉 + z̃),

ỹ = f̃ (z̃) := f (z̃) − 〈 f (z̃)〉.
The variance of preactivations should be of order unity〈(

z̃l
a

)2〉 = O(1),

because one aims to explore the dynamic range of the gain
function, which we assume to be of order unity (we use the
dynamic range of the gain function to define our scale). It then
follows that also the postactivations have a variance of order
unity, so 〈(

f̃ l
a

)〉 = O(1).

Such conditions are typically also enforced by batch nor-
malization. If the yl

a were uncorrelated, the variance of the
preactivations in the next layer is given by

O(1)
!= 〈(z̃l+1

i

)2〉 =∑
a

[
W l+1

ia

]2 〈(
f̃ l
a

)2〉
.

For the variances on both sides to be of order unity, we need
that

W l+1
ia = O(N− 1

2), (B4)

which means that rows and columns of the matrix W l+1 are
vectors with lengths of order unity.

Now assume the presence of correlations of order〈
ỹl

aỹl
b

〉 = 〈 f̃ l
a f̃ l

b

〉 =: Cab = O(ε) (B5)

between the outputs of layer l across different neurons a �= b.
The expression for the variance then changes to〈(

z̃l+1
i

)2〉 =∑
a,b

W l+1
ia W l+1

ib Cab. (B6)

To have low correlations in the next layer, one needs to de-
mand that

O(ε)
!= 〈z̃l+1

i z̃l+1
j

〉 =∑
a,b

W l+1
ia W l+1

jb Cab ∀ i �= j. (B7)

This can be interpreted as demanding that different rows W l+1
i◦

and W l+1
j◦ project out mutually nearly orthogonal subspaces

out of the space of principal components of C. This means
that different neurons i and j each specialize on subspaces
that have little mutual overlap.

Now consider higher-order correlations. It follows from
(A6) and from the condition of weak pairwise correlations
(B3) that for n � 3〈〈

n∏
i=1

yl
i

〉〉
=
〈〈

n∏
i=1

f̃i
(
z̃l

i

)〉〉 = O
(
ε

n
2 +1
)
. (B8)

The cumulants of the preactivations zl+1
i are given by those of

the postactivations as

〈〈
zl+1

i1
. . . zl+1

in

〉〉 = N∑
j1,..., jn=1

W l+1
i1 j1

. . .W l+1
in jn

〈〈
n∏

k=1

f̃ jk (z̃l
jk)

〉〉
.

(B9)

We now distinguish three cases:
(1) Diagonal contributions. First consider the special case

where all indices j1 = · · · = jn are identical. One then gets a
contribution to (B9) at order n � 3:

N∑
j=1

W l+1
i1 j . . .W l+1

in j

〈〈(
f̃ j
)n〉〉︸ ︷︷ ︸

O(1)

= O
(
N1− n

2
)

n�3
< O

(
N− 1

2
)
. (B10)

For n � 3 this is suppressed by a large layer width N .
(2) Off-diagonal contributions with all distinct indices.

Next consider the off-diagonal terms, where all sending neu-
rons’ indices are unequal j1 �= j2 �= · · · �= jn, so that we can
use (B8). For n odd, the contributions vanish because then
(B8) vanishes. For n even, we get

N∑
(j1 �= j2,...,�= jn)=1

W l+1
i1 j1

. . .W l+1
in jn

〈〈
n∏

k=1

f̃ jk

(
z̃l

jk

)〉〉

= O

(
N!

(N − n)!
N− n

2 ε
n
2 +1

)
N�n= O

(
N

n
2 ε

n
2 +1
)
. (B11)

For these contributions to be suppressed for n � 3 with in-
creasing network size, we thus need to demand that the order
of pairwise correlations ε is at most

ε = O(N−1),

so that the off-diagonal contribution (B11) is

O(N−1),

which is hence suppressed with network size also for large
orders n.

(3) Off-diagonal contributions with two or more equal in-
dices. Now consider terms for which a subset of ja, jb, jc, . . .
assume the same value. Let the number of disjoint indices
j1 �= j2 �= · · · �= jr be r < n. Each pair of equal indices can
be seen as the appearance of one Kronecker δ ja jb , which
eliminates one summation

∑N
j=1, hence one factor N less. But

at the same time, by (A8), also the moments are increased
〈∏n

k=1 f̃ jk (z̃l
jk)〉 = O(ε� r

2 �). Together, we get a contribution

O

(
N!

(N − r)!
N− n

2 ε� r
2 �
)

N�1, ε=O(N−1)= O
(
NrN− n

2 N−� r
2 �)

= O
(
N� r

2 �− n
2
)

< O
(
N− 1

2
)
, (B12)

043143-15

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

TABLE II. Interaction functions for different nonlinearities φ. We assume zl ∼ N (μzl , �zl) in both examples. For ReLU, μ̃zl and �̃zl

denote the marginalized mean and covariance with respect to z̃l = (zl
i , zl

j)
T, and Fμ̃

zl ,�̃zl
(x, y) denotes the corresponding cumulative distribution

function.

Nonlinearity Interaction function

φ(z) = ReLU(z) fμ, i =
√

�zl , ii√
2π

exp

(
− μ2

zl , i

2�zl , ii

)
+ μzl , i

2

[
1 + erf

(
μzl , i√
2�zl , ii

)]
f�, ii = �zl , ii

2

[
1 + erf

(
μzl , i√
2�zl , ii

)]
+ μ2

zl , i

4 −
[√

�zl , ii√
2π

exp

(
− μ2

zl , i

2�zl , ii

)
+ μzl , i

2 erf

(
μzl , i√
2�zl , ii

)]2

f�, i j =
√

det(�̃zl)
2π

exp
(
− 1

2 μ̃T
zl �̃

−1
zl μ̃zl

)
+

√
det(�̃zl)

2π
μzl , j

√
π �̃−1

zl , j j√
2

exp(− 1
2 �̃−1

zl , ii μ
2
zl , i) exp

(
(�̃−1

zl , ji
μzl , i)

2

2�̃−1
zl , j j

)[
1 + erf

(
(�̃−1

zl μ̃zl) j√
2�̃−1

zl , j j

)]

+
√

det(�̃zl)
2π

μzl , i

√
π �̃−1

zl , ii√
2

exp(− 1
2 �̃−1

zl , j j μ
2
zl , j) exp

(
(�̃−1

zl , i j
μzl , j)

2

2�̃−1
zl , ii

)[
1 + erf

(
(�̃−1

zl μ̃zl)i√
2�̃−1

zl , ii

)]
+
[
μzl , i μzl , j − �̃−1

zl , i j det(�̃zl)

] [
1
2 erf

(√
2 μzl , i√
�zl , ii

)
+ 1

2 erf

(√
2 μzl , j√
�zl , j j

)
+ Fμ̃zl ,�̃zl

(0, 0)

]

−
[√

�zl , ii√
2π

exp

(
− μ2

zl , i

2�zl , ii

)
+ μzl , i

2

[
1 + erf

(
μzl , i√
2�zl , ii

)]]
×
[√

�zl , j j√
2π

exp

(
− μ2

zl , j

2�zl , j j

)
+ μzl , j

2

[
1 + erf

(
μzl , j√
2�zl , j j

)]]
φ(z) = z + α z2 fμ, i = μzl , i + α (μzl , i)

2 + α �zl , ii

f�, i j = �zl , i j + 2 α �zl , i j (μzl , i + μzl , j) + 2 α2 (�zl , i j)
2 + 4 α2 μzl , i �zl , i j μzl , j

where we used r < n in the last step and upper bounded
the expression by the worst case, in which n = r + 1, where
n is odd. So, contributions from partial diagonal terms are
suppressed with network size, too.

In summary, we have shown that the Gaussian approxima-
tion with weak pairwise correlations of order ε < O(N−1) is
consistently maintained in the limit of wide networks N � 1
if synaptic amplitudes scale as (B4) and if the rows of the con-
nectivity W l in each layer l in addition obey the approximate
orthonormality condition (B7). From a functional perspective
the latter condition makes sense because this condition en-
sures that the N neurons in each layer are used effectively to
represent the entire variability that is present in the previous
layer, avoiding redundancy among neurons.

Finally, we note that Eq. (B7) is fulfilled for Gaussian
initialized, untrained networks. The network parameters θ =
{W l , bl}l=1,...,L+1 are drawn i.i.d. from zero-mean Gaussians

W l
rs

i.i.d.∼ N (0, σ 2
w/Nl−1) and bl

r
i.i.d.∼ N (0, σ 2

b). This choice of ini-
tialization precisely preserves the magnitude of the covariance
within the network:〈

z̃l+1
i z̃l+1

j

〉 =∑
a,b

W l+1
ia W l+1

jb Cl
ab

N�1≈
〈∑

a,b

W l+1
ia W l+1

jb Cl
ab

〉
w

= δi j
σ 2

w

N

∑
a

Cl
aa = O(ε).

Due to the resulting covariance in the next layer being ap-
proximately diagonal, the calculations simplify significantly

in this case. The above considerations include conditions also
for trained networks where correlations among weights cause
correlations between pairs of preactivations (zl

i , zl
j).

APPENDIX C: INTERACTION FUNCTIONS FOR
DIFFERENT ACTIVATION FUNCTIONS

In Sec. III B, we derived the interaction functions resulting
from the nonlinearity φ:

fμ(μzl , �zl) = 〈φ(zl)〉
zl ,

f� (μzl , �zl) = 〈φ(zl) φ(zl)T〉
zl − μyl μT

yl .

Table II gives these expressions for the ReLU and quadratic
nonlinearities.

1. Derivations for ReLU activations

We here consider networks with the ReLU activation
function φ(z) = max(0, z). Taking the distribution of preac-
tivations zl to be Gaussian distributed with mean μzl and
covariance �zl , the mean postactivations are given by

μyl , i = 〈max
(
0, zl

i

)〉
zl ∼N (μzl , �zl)

(C1)

= 1√
2π �zl , ii

∫ ∞

0
dzl

i zl
i exp

(
−
(
zl

i − μzl , i

)2
2�zl , ii

)
(C2)

= −
√

�zl , ii√
2π

∫ ∞

−μzl , i

dzl
i

−zl
i

�zl , ii
exp

(
−
(
zl

i

)2
2 �zl , ii

)

+μzl , i
1√

2π �zl , ii

∫ ∞

−μzl , i

dzl
i exp

(
−
(
zl

i

)2
2 �zl , ii

)
(C3)

043143-16

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

=
√

�zl , ii√
2π

exp

(
−

μ2
zl , i

2 �zl , ii

)

+μzl , i

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]
. (C4)

For the covariance of postactivations, we distinguish the cases
i = j and i �= j, starting with the former by calculating its
second moment as〈

φ
(
zl

i

)
φ
(
zl

i

)〉
zl ∼N (μzl , �zl)

= 1√
2π �zl , ii

∫ ∞

0
dzl

i

(
zl

i

)2
exp

(
− 1

2�zl , ii

(
zl

i − μzl , i

)2)
(C5)

= −
√

�zl , ii√
2π

μzl , i exp

(
−

μ2
zl , i

2�zl , ii

)

+�zl , ii

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]

+
√

2

π
μzl , i

√
�zl , ii exp

(
−

μ2
zl , i

2�zl , ii

)

+
μ2

zl , i

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]
(C6)

=
√

�zl , ii μzl , i√
2π

exp

(
−

μ2
zl , i

2�zl , ii

)

+�zl , ii + μ2
zl , i

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]
.

Combining with the expression for the mean μyl then yields
the diagonal terms of the covariance:

�yl , ii = 〈φ(zl
i

)
φ
(
zl

i

)〉
zl ∼N (μzl , �zl)

− (μyl , i)
2 (C7)

= �zl , ii

2

[
1 + erf

(
μzl , i√
2�zl , ii

)]
+

μ2
zl , i

4

−
[√

�zl , ii√
2π

exp

(
− 1

2�zl , ii
μ2

zl , i

)

+μzl , i

2
erf

(
μzl , i√
2�zl , ii

)]2

. (C8)

In the case i �= j, we look at the joint distribution of
(zi, z j) and denote the marginalized mean and covariance by

μ̃z = (μz, i, μz, j)ᵀ and �̃z =
(
�z, ii �z, i j

�z, ji �z, j j

)
. For the second

moment, we obtain

〈φ(zl
i

)
φ
(
zl

j

)〉
zl ∼N (μzl , �zl)

= 1√
(2π)2 det(�̃z)

∫ ∞

0
dzl

i

∫ ∞

0
dzl

j zl
i zl

j

× exp

(
−1

2
(z̃l − μz)T�̃−1

z (z̃l − μz)

)
(C9)

=
√

det(�̃z)

2π
exp

(
− μ̃T

z �̃−1
z μ̃z

2

)

+
√

det(�̃z)

2π
�̃−1

zl , j j μzl , j

√
π√

2�̃−1
zl , j j

× exp

(
−

�̃−1
zl , ii μ

2
zl , i

2

)
exp

⎛
⎝(�̃−1

zl , ji μzl , i

)2
2�̃−1

zl , j j

⎞
⎠

×
⎡
⎣1 + erf

⎛
⎝(�̃−1

zl μ̃zl

)
j√

2�̃−1
zl , j j

⎞
⎠
⎤
⎦

+
√

det(�̃zl)

2π
�̃−1

zl , ii μzl , i

√
π√

2�̃−1
zl , ii

× exp

(
−

�̃−1
zl , j j μ

2
zl , j

2

)
exp

⎛
⎝(�̃−1

zl , i j μzl , j

)2
2�̃−1

zl , ii

⎞
⎠

×
⎡
⎣1 + erf

⎛
⎝(�̃−1

zl μ̃zl

)
i√

2�̃−1
zl , ii

⎞
⎠
⎤
⎦

+(μzl , i μzl , j − �̃−1
zl , i j det

(
�̃zl

))
×
[

1

2
erf

(√
2 μzl , i√
�zl , ii

)
+ 1

2
erf

(√
2 μzl , j√
�zl , j j

)

+Fμ̃zl ,�̃zl
(0, 0)

]
, (C10)

where μ̃zl and �̃zl denote the marginalized mean and co-
variance with respect to z̃l = (zl

i , zl
j)

T, and Fμ̃zl , �̃zl
(x, y)

denotes the corresponding cumulative distribution function.
Fμ̃zl , �̃zl

(0, 0) is also known as the quadrant probability. By
subtracting μyl , i μyl , j , we obtain the expression for the cross
covariances given in Table II.

Contributions from higher-order correlations

Using the Gram-Charlier expansion [54] of the probability
density function pzl

i
(zl

i), we can derive approximate expres-
sions for the interaction of higher-order correlations of the
preactivations zl . As an example, we derive contributions to
the mean of the postactivations yl up to linear order in G(3)

zl , (i,i,i)
for ReLU activations. The Gram-Charlier expansion up to
third order is

pzl
i

(
zl

i

) ≈
⎧⎨
⎩1 +

G(3)
zl , (i,i,i)

3!
√

�3
zl , ii

[(
zl

i − μzl , i√
�zl , ii

)3

− 3

(
zl

i − μzl , i

)√
�zl , ii

]⎫⎬
⎭

× 1√
2π �zl , ii

exp

(
−
(
zl

i − μzl , i

)2
2�zl , ii

)
.

043143-17

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

Inserting this into the expression for the mean μyl , i of the
postactivations yl , we get

μyl , i = 〈φ(zl
i

)〉
zl ∼N (μzl , �zl)

(C11)

=
∫ ∞

0
dzl

i zl
i pzl

i

(
zl

i

)
(C12)

≈
∫ ∞

0
dzl

i zl
i

1√
2π �zl , ii

exp

(
−
(
zl

i − μzl , i

)2
2�zl , ii

)

+
G(3)

zl , (i,i,i)

3!
√

�3
zl , ii

∫ ∞

0
dzl

i zl
i

×
[(

zl
i − μzl , i√

�zl , ii

)3

− 3

(
zl

i − μzl , i

)√
�zl , ii

]

× exp
(− (zl

i − μzl , i

)2/
2�zl , ii

)√
2π �zl , ii

(C13)

=
√

�zl , ii μzl , i√
2π

exp

(
−

μ2
zl , i

2 �zl , ii

)

+ μzl , i

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]

−
G(3)

zl , (i,i,i)

2 �2
zl , ii

(
�2

zl , ii − 1
) 1

2

[
1 + erf

(
μzl , i√
2 �zl , ii

)]

+
G(3)

zl , (i,i,i)

3! �3
zl , ii

(
3 μzl , i�

2
zl , ii + 2 �zl , ii

+μ3
zl , i + μ2

zl , i − 3
)

×
√

�zl , ii μzl , i√
2π

exp

(
−

μ2
zl , i

2�zl , ii

)
. (C14)

Alternatively, if one wishes to compute higher-order cu-
mulants of yl , this can be done by first evaluating the integrals
for higher-order moments, analogously to the computations
above for the first and second moments. Cumulants can then
be obtained via the relations given by Gardiner [55].

2. Derivations for quadratic activations

We here consider networks with a quadratic activation
function φ(z) = z + α z2. For any distribution of preacti-
vations zl with mean μzl and covariance �zl , the mean
postactivations are given by

μyl , i = 〈zl
i + α

(
zl

i

)2〉
zl (C15)

= μzl , i + α (μzl , i)
2 + α �zl , ii. (C16)

For the covariance of postactivations, we first calculate the
second moment〈

φ
(
zl

i

)
φ
(
zl

j

)〉
zl = 〈[zl

i + α
(
zl

i

)2] [
zl

j + α (zl
j)

2
]〉

zl

(C17)

= �zl , i j + μzl , i μzl , j + α M (3)
zl , (i, j, j)

+α M (3)
zl , (j,i,i) + α2 M (4)

zl , (i,i, j, j), (C18)

where M (n)
zl denotes the nth moment of preactivations zl . Com-

bining the expression (C17) for the mean μyl then yields the
covariance

�yl , i j = 〈φ(zl
i

)
φ
(
zl

j

)〉
zl − 〈φ(zl

i

)〉zl

〈
φ
(
zl

j

)〉
zl (C19)

= �zl , i j + 2 α �zl , i j (μzl , i + μzl , j)

+ 2 α2 (�zl , i j)
2 + 4 α2 μzl , i �zl , i j μzl , j

+�yl , i j |n>2, (C20)

where �yl , i j |n>2 contains all terms involving cumulants of
order n > 2. It is given by

�yl , i j |n>2 = α (1 + 2α μzl , i) G(3)
zl , (i, j, j)

+α (1 + 2α μzl , j) G(3)
zl , (j,i,i)

+α2 G(4)
zl , (i,i, j, j). (C21)

In these expressions, G(n)
zl , (i1, i2, ... , in) denotes the nth cumulant

of preactivations given by 〈〈zl
i1 zl

i2 . . . zl
in〉〉. If the preacti-

vations zl are Gaussian distributed zl ∼ N (μzl , �zl), all
cumulants beyond second order vanish, G(n>2)

zl = 0, yielding
�yl , i j |n>2 = 0 and consequently the result in Table II.

APPENDIX D: INFORMATION PROPAGATION
IN NETWORKS WITH QUADRATIC ACTIVATIONS

Figure 2 in the main text illustrates information propaga-
tion in networks with ReLU activations. For completeness,
we include here as supplemental Fig. 8 the analogous illus-
tration for a network with quadratic activations. For Fig. 3,
we include the results for networks with quadratic activation
function in supplemental Fig. 9.

APPENDIX E: DATA SAMPLE GENERATION FOR MNIST
BASED ON GAUSSIAN APPROXIMATION OF INPUT

DISTRIBUTION

In Sec. IV C of the main text, we discuss training net-
works to solve MNIST using Remp, MSE [Eq. (25)] with data
samples drawn from the Gaussian approximation of the input
distribution. For this Gaussian approximation, means μ̂t

x and
covariances �̂t

x for each class t are estimated empirically
from the training data set where we flattened the 28 × 28
images into 784-dimensional vectors. Due to lack of vari-
ability in some pixel values at the image edges, the resulting
covariances �̂t

x are not positive definite, but only positive
semidefinite.

To account for the zero eigenvalues of the covariance, data
samples are generated based on a principal component analy-
sis of the covariance matrix. For each class t , we decompose
the covariance matrix as

�̂t
x = V DV T (E1)

with V = (v1| . . . |vN0) containing the unit-length eigenvectors
vi and D = diag(λ1, . . . , λN0) containing the corresponding
eigenvalues λi of �̂t

x, which we assume to be ordered ac-
cording to their size, λ1 � · · · � λN0 � 0. We set a threshold
ϑPCA > 0 that defines a subspace U spanned by the eigenvec-
tors {vi}i=1,...,NPCA for which λi > ϑPCA. Data samples x̂(d)|U

043143-18

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

FIG. 8. Information propagation in networks with quadratic activation function for the XOR problem. (a) The distribution of input data is
modeled as a Gaussian mixture. Data samples x(d) (blue and green dots) are assigned to class labels t = ±1 based on the respective mixture
component. (b), (c) Distribution of the network output for random (b) and trained (c) parameters. Class-conditional distributions (solid curves)
are determined as a superposition of the propagated mixture components (dashed curves) and empirical estimates (blue and green histograms)
are obtained from the test data. Since networks are trained on class labels t = ±1, the classification threshold is set to y = 0 (gray lines). Other
parameters: φ(z) = z + α z2, network depth L = 1, width N = 10; trained network in (c) achieves P = 90.46% performance.

are then generated with respect to this subspace U and
projected back to the input space RN0 according to

x̂(d)|U ∼ N (0, diag(λ1, . . . , λNPCA)), (E2)

x̂(d) = μ̂t
x + V

(
x̂(d)|U

0

)
. (E3)

For all experiments in Sec. IV C of the main text, we choose
ϑPCA = 10−2, corresponding to NPCA between 103 and 234 for
the different classes t . Since for all classes t the magnitude of
the largest eigenvalue is of order 1, this choice of ϑPCA ensures
including relevant eigenvectors while excluding noise due to
finite numerical precision. Since the MNIST training data
set contains 60000 samples, to allow for a fair comparison
between training on Gaussian samples and on the original
images, we generated a similarly sized training data set of
D = 60000 Gaussian samples.

FIG. 9. Deviation between theoretical and empirical output
distribution for (a) random and (b) trained networks, measured
across 102 different network realizations using the normalized
Kullback-Leibler divergence D̂KL(pemp‖ptheo). On average, the
trained networks achieve performance values of P = 96.52% ±
0.15% compared to Popt = 97.5%. Networks were trained to perform
the XOR task described in Sec. IV B 1. Other parameters: φ(z) =
z + α z2.

APPENDIX F: PROBLEM SETUP FOR INCLUSION
OF HIGHER-ORDER STATISTICS IN THE MAIN TEXT

The problem studied in Sec. IV D of the main text is
constructed as follows. We define two classes, t = ±1, each
composed of two Gaussian components + and −, with the
following means:

μt=+1, −
x = (−0.5, 0)ᵀ, μt=−1, −

x = (−1.5, 0)ᵀ; (F1)

μt=+1, +
x = (1.5, 0)ᵀ, μt=−1, +

x = (0.5, 0)ᵀ. (F2)

Covariances are isotropic throughout with

�t,±
x = 0.05 I. (F3)

The outer components (t = −1, −) and (t = +1, +) are
weighed by pouter = 1

8 , while the inner components (t =
−1, +) and (t = +1, −) are weighed by pinner = 3

8 , as illus-
trated in Figs. 6(a) and 6(b) of the main text. A data sample
x(d) is assigned a target label t (d) ∈ {±1} based on the mixture
component it is drawn from. Distribution parameters are cho-
sen such that the class-conditional means and covariances of
the data are identical,

μt=±1
x =

(
0
0

)
, �t=±1

x =
(

0.8 0
0 0.5

)
, (F4)

while the third-order correlations differ

G(3), t=±1
x, (i, j,k) = ± 0.75 δi jδ jkδkiδi1. (F5)

We use training and test data sets of size D = 104.

APPENDIX G: DEPTH SCALES OF INFORMATION
PROPAGATION

We here discuss the relation between the presented work
and Poole et al. [15]. To formalize this relation, we define
as zld

θk the preactivation of neuron k in layer l for a given
data sample x(d) in a network with parameters θ . Poole et al.
study ensembles of networks across random realizations of
network parameters θ . The family of distributions they study,

043143-19

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

expressed in terms of preactivations, is thus

p̃l
{d}({zk}) =

〈∏
k,d

δ
(
zd

k − zld
kθ

)〉
θ

, (G1)

which is one distribution jointly for all preactivations
{zd

k }d=1,...,D; k=1,...,N for a given set of P data samples x(d) and
for each given layer l . In the limit of wide networks, they
find that p̃ factorizes across different neuron indices, so that
zld

i and zld ′
k are independent for different i �= k. Further, these

variables are centered Gaussian, so that a single covariance
matrix is sufficient to describe their statistics. In this limit, it
is therefore sufficient to study the joint statistics of all pairs of
networks corresponding to all pairs of inputs d, d ′:

p̃l
dd ′ (z, z′) = 〈δ(z − zld

θ

)
δ
(
z′ − zld ′

θ

)〉
θ
. (G2)

Correlation functions in their work a priori thus quantify
fluctuations across realizations of network parameters. Their
mean-field theory for deep feed-forward networks is identical
to the classical mean-field theory of random recurrent net-
works [56] because for recurrent networks with discrete-time
updates the equal-time statistics is identical to the equal-layer
statistics of a deep network [57].

In the presented work, instead, we study individual net-
works defined by one fixed set of parameters θ across the
distribution p(x) of data samples x(d). Correlations in our
work thus quantify the variability of the network state across
different data points. Formally, the family of distributions we
study is

pl
θ ({zk}) =

〈∏
k

δ
(
zk − zld

θ

)〉
d

, (G3)

which for each given l and θ is one joint distribution of all
neurons k. Importantly, the distribution is across the ensemble
of data points d .

One formal difference is thus the expectation across θ in
(G1) versus the expectation over d in (G3). Wide networks,
however, tend to be self-averaging. This means that the en-
semble across parameters θ studied by Poole et al. shows a
concentration on a single typical behavior that one finds in any
of its (likely) individual realizations. Formally, this means that
the empirical distribution of (zk, z′

k) across neurons k for any
random choice of parameters θ takes on the same form as p̃,
so that (G2) for N large approaches the empirical average over
neuron activations,

p̃l
dd ′ (z, z′)

self-averaging� N−1
∑

k

δ
(
z − zld

θk

)
δ
(
z′ − zld ′

θk

)
, ∀θ.

A way to show this is by a saddle-point approximation of the
moment-generating function after the disorder average across
θ [e.g., 21,53,57–59].

To derive the result by Poole et al. [15] or Molgedey
et al. [56] in our notation, we start with the expression for
the preactivations zl+1

i =∑k W l+1
ik yl

k + bl+1
i [see Eq. (1)]. For

Gaussian distributed W l+1
ik and bl+1

i , preactivations for one
fixed data sample x(d) (suppressing the superscript d for

brevity in the following) become Gaussian as well, with mean
and covariance

Mzl+1, i :=
〈∑

k

W l+1
ik yl

k + bl+1
i

〉
W,b

=
∑

k

〈
W l+1

ik

〉
W l+1

〈
yl

k

〉
W,b + 〈bl+1

i

〉
bl+1 = 0, (G4)

Szl+1,i j :=
〈∑

k,m

W l+1
ik W l+1

jm yl
kyl

m + bl+1
i bl+1

j

〉
W,b

=
∑
k,m

〈
W l+1

ik W l+1
jm

〉
W l+1

〈
yl

kyl
m

〉
W,b + 〈bl+1

i bl+1
j

〉
bl+1

= δi j

(
σ 2

w

〈
ylyl
〉
W,b + σ 2

b

)
=: δi j Szl+1 , (G5)

with

Szl+1 = σ 2
w 〈φ(zl)φ(zl)〉zl+1∼N (0,Szl) + σ 2

b , (G6)

and where we used the mapping by the activation function
(15). To determine the statistics 〈yl

k〉W,b and 〈yl
kyl

k〉W,b, we
simultaneously performed an average over weights and biases
in layers l ′ � l . These statistics are identical across neurons,
so we write 〈yl

k〉W,b = 〈yl〉W,b and 〈yl
kyl

k〉W,b = 〈ylyl〉W,b. Equa-
tions (G4) and (G5) show that correlations among different
neurons vanish on average across networks.

The covariance between preactivations of a pair of net-
works for two different inputs x(d) and x(d ′) analogously
becomes

Szl+1,d zl+1,d ′

= σ 2
w 〈φ(zl,d)φ(zl,d ′

)〉(zl,d ,zl,d ′)∼N (0,{S
zl,d zl,d ′ }) + σ 2

b , (G7)

where N (0, {Szl,d zl,d ′ }) is meant as the Gaussian distri-
bution for the pair (zl,d , zl,d ′

) with covariance matrix(Szl,d S
zl,d zl,d ′

S
zl,d ′

zl,d S
zl,d ′

)
.

We may make a connection to our results by considering
a pair of inputs x(d) and x(d ′). These inputs are presented
to the network as y0d and y0d ′

. The theory by Poole et al.
yields a measure of the overlap Ol

dd ′ of network states after
l layers as the solution of the joint iterative equations derived
above. In the limit of wide networks, this overlap becomes
self-averaging, so it concentrates around its mean value across
y:

Ol
dd ′ := N−1

∑
k

yld
k yld ′

k

� 〈yld yld ′ 〉W,b

= 〈φ(zl,d)φ(zl,d ′
)〉(zl,d ,zl,d ′)∼N (0,{S

zl,d zl,d ′ })

= σ−2
w

(
Szl+1,d zl+1,d ′ − σ 2

b

)
. (G8)

To show the simplest possible link between the depth scales
studied in Poole et al., we consider the case of a deep un-
trained network. The statistics of zl and yl decay to a fixed
point, so that we can consider the autostatistics to become

043143-20

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

constant for a large enough l ,

Szl,d = A0, ∀ d,
(G9)

Szl,d zl,d ′ = C0, ∀ d �= d ′,

where A0 is the stationary solution of (G6),

A0 = σ 2
w 〈φ(z)φ(z)〉z∼N (0,A0) + σ 2

b , (G10)

and C0 the stationary solution of (G7),

C0 = σ 2
w 〈φ(z1)φ(z2)〉

(z1,z2)∼N
(

0,
[A0 C0
C0 A0

]) + σ 2
b .

Now consider pairs of inputs (y0d , y0d ′
) for which the statistics

of preactivations differ only little from this fixed-point statis-
tics: assume that any data point has variance Szl = A0 and for
any pair (d, d ′) of data points we may express the covariance
of preactivations in the first layer as

Sz1,d z1,d ′ = C0 + δC1
dd ′ , (G11)

where δC1
dd ′ � C0. Based on these assumptions, we now com-

pute decay constants with l .
Linearizing the iteration (G7), one obtains for the propaga-

tion of δCl
dd ′

δCl+1
dd ′ = σ 2

w 〈φ′(zl,d)φ′(zl,d ′
)〉 δCl

dd ′ + O
[(

δCl
dd ′
)2]

.

Here, we made use of Price’s theorem [51–53, Appendix
A] ∂〈φ(z)φ(z′)〉/∂�zz′ = 〈φ′(z)φ′(z′)〉 where φ′ = dφ/dz and
�zz′ is the covariance of z and z′. For stationary statistics
across layers (G10) and under the homogeneity assumption
across data samples (G9), one thus has

〈φ′(zd)φ′(zd ′
)〉

= 〈φ′(z1)φ′(z2)〉
(z1,z2)∼N

(
0,
[A0 C0
C0 A0

]) ∀ d, d ′

=: 〈φ′φ′〉.
One then obtains an exponential evolution with layer index

δCl+1
dd ′ = (σ 2

w 〈φ′φ′〉)l δC1
dd ′

= e− l
ξ δC1

dd ′ , (G12)

with a depth scale

ξ = −1/ ln
[
σ 2

w 〈φ′φ′〉]. (G13)

So, this equation gives rise to the depth scales studied in Poole
et al. for network ensembles. This scale ξ−1 corresponds
to the Lyapunov exponent computed in Molgedey et al. In
particular, at the transition to chaos, namely, at the point in
parameter space (σw, σb) for which σ 2

w 〈φ′φ′〉 = 1, the depth
scale diverges. The overlap of activations (G8) shows the same
depth scale because its variation is linearly related to δCl

dd ′ as
δCl

dd ′ = σ 2
w δOl−1

dd ′ , so

δOl
dd ′ = (σ 2

w 〈φ′φ′〉)l δO0
dd ′ . (G14)

Both the covariance of preactivations (Sz1,d z1,d ′) and the over-
laps of activations (Ol

dd ′ = δOl
dd ′ + O0) therefore decay to

fixed points, respectively C0 and O0, that are related by O0 =
σ−2

w (C0 − σ 2
b).

We can relate these results to our work on single networks
by reexpressing the overlap Ol

dd ′ in terms of the probability
distribution across different data samples. From (G8) it fol-
lows that

1

D (D − 1)

D∑
(d �=d ′)=1

Ol
dd ′ (G15)

� N−1
N∑

k=1

[
1

D

D∑
d=1

yld
k

][
1

D

D∑
d ′=1

yld ′
k

]
+ O(D−1) (G16)

D�1� N−1
N∑

k=1

〈
yld

k

〉2
d

(G17)

� N−1
N∑

k=1

(μyl ,{k})2. (G18)

Here, μyl ,{k} denotes the mean postactivation of neuron k in
layer l , taken over the ensemble of all data points d . This is
obtained by iterating Eqs. (14) and (17).

We show in Fig. 10 that predictions of (G18) are indeed
consistent with the depth scale obtained from Poole et al.’s
theory (G13). Moreover, since we derived our theory for sin-
gle networks, (G18) also captures variability due to particular
network realizations. Interestingly, while for network ensem-
bles the depth scale ξ describes the evolution of the second
moments, expression (G18) shows that for single networks
ξ describes the evolution of the squared means across data
samples.

FIG. 10. Depth scale of cumulant propagation in a randomly
initialized network. Evolution of overlaps Ol in (G8) and (G18) as
a function of the layer l . Solid curves show the predicted decay
as e−l/ξ , with length scale ξ given by (G13) from Poole et al. for
network ensembles. Dashed lines indicate the fixed points O0 to
which the overlaps converge. Empirical estimates of the overlaps
Ol

dd ′ in (G15) are shown as dots. Values of the overlaps based on
the cumulant propagation for single networks derived in (G18) are
shown as triangles. Empirical estimates and the values based on
data statistics match closely so that the symbols overlap. To isolate
the depth scale of the overlaps, input data {x(d)}d are drawn from
a Gaussian N (0, A0), with A0 given by (G10). Other parameters:
σw = σb ∈ [0.76, 0.81, 0.85] (from light to dark colors), α = 0.1.

043143-21

KIRSTEN FISCHER et al. PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks, in
Advances in Neural Information Processing Systems, edited
by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (Curran Associates, Red Hook, NY, 2012), Vol. 25,
pp. 1097–1105, https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot et al., Mastering the game of go
with deep neural networks and tree search, Nature (London)
529, 484 (2016).

[3] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, New York, 2006).

[4] Y. Bahri, J. Kadmon, J. Pennington, S. S. Schoenholz, J.
Sohl-Dickstein, and S. Ganguli, Statistical mechanics of deep
learning, Annu. Rev. Condens. Matter Phys. 11, 501 (2020).

[5] H. W. Lin, M. Tegmark, and D. Rolnick, Why does deep
and cheap learning work so well? J. Stat. Phys. 168, 1223
(2017).

[6] R. Shwartz-Ziv and N. Tishby, Opening the black box of deep
neural networks via information, arXiv:1703.00810.

[7] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent
kernel: Convergence and generalization in neural net-
works, in Advances in Neural Information Processing
Systems (MIT Press, Cambridge, MA, 2018), Vol. 31,
pp. 8580–8589, https://proceedings.neurips.cc/paper/2018/file/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

[8] A. M. Saxe, J. L. McClelland, and S. Ganguli, A mathematical
theory of semantic development in deep neural networks, Proc.
Natl. Acad. Sci. USA 116, 11537 (2019).

[9] O. Cohen, O. Malka, and Z. Ringel, Learning curves for over-
parametrized deep neural networks: A field theory perspective,
Phys. Rev. Res. 3, 023034 (2021).

[10] R. M. Neal, Bayesian Learning for Neural Networks (Springer,
New York, 1996).

[11] C. K. Williams, Computation with infinite neural networks,
Neural Comput. 10, 1203 (1998).

[12] J. Lee, J. Sohl-Dickstein, J. Pennington, R. Novak, S.
Schoenholz, and Y. Bahri, Deep neural networks as gaussian
processes, in International Conference on Learning Represen-
tations (2018), https://openreview.net/forum?id=B1EA-M-0Z.

[13] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison, Deep
convolutional networks as shallow gaussian processes, in
International Conference on Learning Representations (2019),
https://openreview.net/forum?id=Bklfsi0cKm.

[14] C. Rasmussen and C. Williams, Gaussian Processes for Ma-
chine Learning, Adaptive Computation and Machine Learning
(MIT Press, Cambridge, MA, 2006), p. 248.

[15] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and
S. Ganguli, Exponential expressivity in deep neural
networks through transient chaos, in Advances in Neural
Information Processing Systems 29, edited by D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett (Curran Associates, Red Hook, NY, 2016), pp.
3360–3368, https://proceedings.neurips.cc/paper/2016/file/
148510031349642de5ca0c544f31b2ef-Paper.pdf.

[16] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-
Dickstein, On the expressive power of deep neural networks, in
Proceedings of the 34th International Conference on Machine

Learning, Proceedings of Machine Learning Research, Vol. 70,
edited by D. Precup and Y. W. Teh (PMLR, 2017), pp. 2847–
2854, https://proceedings.mlr.press/v70/raghu17a.html.

[17] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein,
Deep information propagation, arXiv:1611.01232.

[18] H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, Superflow
and Vortex Lines Disorder Fields, Phase Transitions (World
Scientific, Singapore, 1989).

[19] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 1996).

[20] J. A. Hertz, Y. Roudi, and P. Sollich, Path integral methods for
the dynamics of stochastic and disordered systems, J. Phys. A:
Math. Theor. 50, 033001 (2017).

[21] M. Helias and D. Dahmen, Statistical Field Theory for Neural
Networks (Springer, Berlin, 2020), Vol. 970, p. 203.

[22] Y. LeCun, C. Cortes, and C. J. Burges, The mnist database of
handwritten digits, 1998, http://yann.lecun.com/exdb/mnist/.

[23] V. Vapnik, Principles of risk minimization for learn-
ing theory, in Advances in Neural Information Process-
ing Systems, edited by J. Moody, S. Hanson, and R. P.
Lippmann (Morgan Kaufmann, San Francisco, 1992), Vol.
4, pp. 831–838, https://proceedings.neurips.cc/paper/1991/file/
ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf.

[24] V. N. Vapnik, Adaptive and learning systems for signal pro-
cessing communications, and control, The Nature of Statistical
Learning Theory (Springer, New York, 1998).

[25] R. Kohavi and D. H. Wolpert, Bias plus variance decomposition
for zero-one loss functions, in Proceedings of the Thirteenth
International Conference on Machine Learning (Morgan Kauf-
mann, San Francisco, 1996), Vol. 96, pp. 275–283.

[26] D. P. Kingma and J. L. Ba, Adam: A method for stochas-
tic gradient descent, in International Conference on Learn-
ing Representations (2015), https://openreview.net/forum?id=
8gmWwjFyLj.

[27] I. Loshchilov and F. Hutter, Decoupled weight decay regulariza-
tion, in International Conference on Learning Representations
(2019), https://openreview.net/forum?id=Bkg6RiCqY7.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai et al., Pytorch: An
imperative style, high-performance deep learning library, in Ad-
vances in Neural Information Processing Systems 32, edited by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett (Curran Associates, Red Hook, NY, 2019),
Vol. 32, pp. 8024–8035, https://proceedings.neurips.cc/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[29] A. Krizhevsky , Learning multiple layers of features from
tiny images, Department of Computer Science, University
of Toronto, 2009, https://www.cs.toronto.edu/∼kriz/learning-
features-2009-TR.pdf.

[30] S. Zagoruyko and N. Komodakis, Wide residual networks,
in Proceedings of the British Machine Vision Conference
(BMVC), edited by E. R. H. Richard C. Wilson and W. A. P.
Smith (BMVA Press, Durham, UK, 2016), pp. 87.1–87.12,
https://dx.doi.org/10.5244/C.30.87.

[31] G. Cybenko, Approximation by superpositions of a sigmoidal
function, Math. Control Signals Syst. 2, 303 (1989).

[32] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer
feedforward networks with a nonpolynomial activation func-

043143-22

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1038/nature16961
https://doi.org/10.1146/annurev-conmatphys-031119-050745
https://doi.org/10.1007/s10955-017-1836-5
http://arxiv.org/abs/arXiv:1703.00810
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://doi.org/10.1073/pnas.1820226116
https://doi.org/10.1103/PhysRevResearch.3.023034
https://doi.org/10.1162/089976698300017412
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=Bklfsi0cKm
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.mlr.press/v70/raghu17a.html
http://arxiv.org/abs/arXiv:1611.01232
https://doi.org/10.1088/1751-8121/50/3/033001
http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://dx.doi.org/10.5244/C.30.87
https://doi.org/10.1007/BF02551274

DECOMPOSING NEURAL NETWORKS AS MAPPINGS OF … PHYSICAL REVIEW RESEARCH 4, 043143 (2022)

tion can approximate any function, Neural Networks 6, 861
(1993).

[33] A. Pinkus, Approximation theory of the mlp model in neural
networks, Acta Numer. 8, 143 (1999).

[34] D. J. MacKay, Information Theory, Inference and Learning
Algorithms (Cambridge University Press, Cambridge, 2003).

[35] C. K. I. Williams and D. Barber, Bayesian classification with
Gaussian processes, IEEE Trans. Pattern Anal. Mach. Intell. 12,
1342 (1998).

[36] C. K. Williams and C. E. Rasmussen, Gaussian Processes for
Machine Learning, 1st ed. (MIT Press, Cambridge, MA, 2006).

[37] E. Dyer and G. Gur-Ari, Asymptotics of wide networks from
feynman diagrams, in International Conference on Learn-
ing Representations (2020), https://openreview.net/forum?id=
S1gFvANKDS.

[38] G. Naveh, O. Ben David, H. Sompolinsky, and Z. Ringel, Pre-
dicting the outputs of finite deep neural networks trained with
noisy gradients, Phys. Rev. E 104, 064301 (2021).

[39] S. Yaida, Non-Gaussian processes and neural networks at
finite widths, in Proceedings of The First Mathematical
and Scientific Machine Learning Conference, Proceedings
of Machine Learning Research, edited by J. Lu and R.
Ward (Princeton University, Princeton, NJ, 2020), Vol. 107,
pp. 165–192, http://proceedings.mlr.press/v107/yaida20a/
yaida20a.pdf.

[40] G. Deco and W. Brauer, Higher order statistical decorre-
lation without information loss, in Proceedings of the 7th
International Conference on Neural Information Process-
ing Systems, NIPS’94 (MIT Press, Cambridge, MA, 1994),
pp. 247–254, https://proceedings.neurips.cc/paper/1994/file/
892c91e0a653ba19df81a90f89d99bcd-Paper.pdf.

[41] S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová, Modeling
the Influence of Data Structure on Learning in Neural Net-
works: The Hidden Manifold Model, Phys. Rev. X 10, 041044
(2020).

[42] S. Goldt, G. Reeves, M. Mézard, F. Krzakala, and L. Zdeborová,
The Gaussian equivalence of generative models for learning
with two-layer neural networks, arXiv:2006.14709.

[43] B. Loureiro, C. Gerbelot, H. Cui, S. Goldt, F. Krzakala, M.
Mézard, and L. Zdeborová, Capturing the learning curves of
generic features maps for realistic data sets with a teacher-
student model, arXiv:2102.08127.

[44] G. Yang and E. J. Hu, Tensor programs iv: Feature learning
in infinite-width neural networks, in Proceedings of the 38th
International Conference on Machine Learning, Proceedings of
Machine Learning Research, Vol. 139, edited by M. Meila and
T. Zhang (PMLR, 2021), pp. 11727–11737, https://proceedings.
mlr.press/v139/yang21c.html.

[45] C. Fang, J. Lee, P. Yang, and T. Zhang, Modeling from features:
a mean-field framework for over-parameterized deep neural net-

works, in Proceedings of Thirty Fourth Conference on Learning
Theory, Proceedings of Machine Learning Research, Vol. 134
(PMLR, 2021), pp. 1887–1936, https://proceedings.mlr.press/
v134/fang21a.html.

[46] M. E. A. Seddik, C. Louart, M. Tamaazousti, and R. Couillet,
Random Matrix Theory Proves that Deep Learning Represen-
tations of GAN-data Behave as Gaussian Mixtures, in Interna-
tional Conference on Machine Learning (PMLR Press, 2020),
pp. 8573–8582, http://proceedings.mlr.press/v119/seddik20a.
html.

[47] H. Huang, Mechanisms of dimensionality reduction and decor-
relation in deep neural networks, Phys. Rev. E 98, 062313
(2018).

[48] J. Zhou and H. Huang, Weakly correlated synapses promote
dimension reduction in deep neural networks, Phys. Rev. E 103,
012315 (2021).

[49] D. A. Roberts, S. Yaida, and B. Hanin, The Principles of
Deep Learning Theory: An Effective Theory Approach to
Understanding Neural Networks (Cambridge University Press,
Cambridge, in press).

[50] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (IEEE,
Piscataway, NJ, 2016), https://ieeexplore.ieee.org/document/
7780459.

[51] R. Price, A useful theorem for nonlinear devices having gaus-
sian inputs, IEEE Trans. Inf. Theory 4, 69 (1958).

[52] A. Papoulis and S. U. Pillai, Probability, Random Variables, and
Stochastic Processes, 4th ed. (McGraw-Hill, Boston, 2002).

[53] J. Schuecker, S. Goedeke, D. Dahmen, and M. Helias,
Functional methods for disordered neural networks,
arXiv:1605.06758.

[54] S. Blinnikov and R. Moessner, Expansions for nearly Gaus-
sian distributions, Astron. Astrophys. Suppl. Ser. 130, 193
(1998).

[55] C. W. Gardiner, Handbook of Stochastic Methods for
Physics, Chemistry and the Natural Sciences, 2nd ed.,
Springer Series in Synergetics No. 13 (Springer, Berlin,
1985).

[56] L. Molgedey, J. Schuchhardt, and H. G. Schuster, Suppressing
Chaos in Neural Networks by Noise, Phys. Rev. Lett. 69, 3717
(1992).

[57] K. Segadlo, B. Epping, A. van Meegen, D. Dahmen, M.
Krämer, and M. Helias, Unified field theory for deep and re-
current neural networks, J. Stat. Mech. (2022) 103401.

[58] A. Crisanti and H. Sompolinsky, Path integral approach to ran-
dom neural networks, Phys. Rev. E 98, 062120 (2018).

[59] B. Bordelon and C. Pehlevan, Self-consistent dynamical
field theory of kernel evolution in wide neural networks,
arXiv:2205.09653.

043143-23

https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1109/34.735807
https://openreview.net/forum?id=S1gFvANKDS
https://doi.org/10.1103/PhysRevE.104.064301
http://proceedings.mlr.press/v107/yaida20a/yaida20a.pdf
https://proceedings.neurips.cc/paper/1994/file/892c91e0a653ba19df81a90f89d99bcd-Paper.pdf
https://doi.org/10.1103/PhysRevX.10.041044
http://arxiv.org/abs/arXiv:2006.14709
http://arxiv.org/abs/arXiv:2102.08127
https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v134/fang21a.html
http://proceedings.mlr.press/v119/seddik20a.html
https://doi.org/10.1103/PhysRevE.98.062313
https://doi.org/10.1103/PhysRevE.103.012315
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.1109/TIT.1958.1057444
http://arxiv.org/abs/arXiv:1605.06758
https://doi.org/10.1051/aas:1998221
https://doi.org/10.1103/PhysRevLett.69.3717
https://doi.org/10.1088/1742-5468/ac8e57
https://doi.org/10.1103/PhysRevE.98.062120
http://arxiv.org/abs/arXiv:2205.09653

