000912177 001__ 912177
000912177 005__ 20250514114658.0
000912177 0247_ $$2doi$$a10.1016/j.jpowsour.2022.232436
000912177 0247_ $$2ISSN$$a0378-7753
000912177 0247_ $$2ISSN$$a1873-2755
000912177 0247_ $$2Handle$$a2128/32918
000912177 0247_ $$2WOS$$aWOS:000892216800003
000912177 037__ $$aFZJ-2022-05393
000912177 082__ $$a620
000912177 1001_ $$0P:(DE-Juel1)180285$$aUnachukwu, Ifeanyichukwu D.$$b0
000912177 245__ $$aElectrochemical and degradation behaviour of single cells comprising Ni-GDC fuel electrode under high temperature steam- and co-electrolysis conditions
000912177 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
000912177 3367_ $$2DRIVER$$aarticle
000912177 3367_ $$2DataCite$$aOutput Types/Journal article
000912177 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669968330_16237
000912177 3367_ $$2BibTeX$$aARTICLE
000912177 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912177 3367_ $$00$$2EndNote$$aJournal Article
000912177 520__ $$aThe present study investigates the electrochemical performance and degradation behaviour of a Nickel - Gd2O3 doped CeO2 (Ni-GDC) electrode containing single cell under steam electrolysis and co-electrolysis modes. The cell consists of the Ni-GDC fuel electrode, an 8 mol% Y2O3 stabilized ZrO2 (8YSZ) electrolyte layer, a GDC barrier layer and a (La,Sr)(Co,Fe)O3 (LSCF) oxygen electrode. Firstly, the electrolyte-supported single cells were fabricated and characterized using DC- and AC-techniques in the 750–900 °C temperature range. Distribution of relaxation times (DRT) analysis was employed to resolve frequency-dependent electrode processes. The observed processes were further modelled using an equivalent circuit model (ECM) with 3 R//CPE (resistor//constant phase element) in series with a finite length diffusion element (Warburg short - Ws). Long-term stability tests of the single cells were carried out under steam electrolysis (H2O:H2, 50:50) and co-electrolysis (H2O:CO2:CO, 40:40:20) conditions at 900 °C with −0.5 A‧cm−2 current density for 500 h. Steam electrolysis conditions exhibit the highest degradation rate of 499 mV‧kh−1, while a lower degradation rate of 308 mV‧kh−1 is observed under co-electrolysis conditions. The post-test analysis of the operated cell shows increased Ni particles size, suggesting Ni agglomeration in both electrolysis modes.
000912177 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000912177 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912177 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b1$$eCorresponding author
000912177 7001_ $$0P:(DE-Juel1)129936$$aVinke, Izaak C.$$b2
000912177 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3
000912177 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b4
000912177 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2022.232436$$gVol. 556, p. 232436 -$$p232436$$tJournal of power sources$$v556$$x0378-7753$$y2023
000912177 8564_ $$uhttps://juser.fz-juelich.de/record/912177/files/1-s2.0-S0378775322014136-main.pdf$$yOpenAccess
000912177 8767_ $$d2023-04-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000912177 909CO $$ooai:juser.fz-juelich.de:912177$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000912177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180285$$aForschungszentrum Jülich$$b0$$kFZJ
000912177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b1$$kFZJ
000912177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich$$b2$$kFZJ
000912177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
000912177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b4$$kFZJ
000912177 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000912177 9141_ $$y2023
000912177 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000912177 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912177 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000912177 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000912177 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000912177 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912177 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000912177 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2023-08-28
000912177 920__ $$lyes
000912177 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000912177 9801_ $$aFullTexts
000912177 980__ $$ajournal
000912177 980__ $$aVDB
000912177 980__ $$aUNRESTRICTED
000912177 980__ $$aI:(DE-Juel1)IEK-9-20110218
000912177 980__ $$aAPC
000912177 981__ $$aI:(DE-Juel1)IET-1-20110218