000912181 001__ 912181
000912181 005__ 20230929112459.0
000912181 0247_ $$2doi$$a10.1016/j.toxlet.2022.11.018
000912181 0247_ $$2ISSN$$a0378-4274
000912181 0247_ $$2ISSN$$a1879-3169
000912181 0247_ $$2Handle$$a2128/32994
000912181 0247_ $$2pmid$$a36503818
000912181 0247_ $$2WOS$$aWOS:000928240000002
000912181 037__ $$aFZJ-2022-05397
000912181 082__ $$a610
000912181 1001_ $$0P:(DE-HGF)0$$aKaiser, Jesko$$b0
000912181 245__ $$aA novel binding site in the nicotinic acetylcholine receptor for MB327 can explain its allosteric modulation relevant for organophosphorus-poisoning treatment
000912181 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000912181 3367_ $$2DRIVER$$aarticle
000912181 3367_ $$2DataCite$$aOutput Types/Journal article
000912181 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675250275_9369
000912181 3367_ $$2BibTeX$$aARTICLE
000912181 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912181 3367_ $$00$$2EndNote$$aJournal Article
000912181 520__ $$aOrganophosphorus compounds (OPCs) are highly toxic compounds that can block acetylcholine esterase (AChE) and thereby indirectly lead to an overstimulation of muscarinic and nicotinic acetylcholine receptors (nAChRs). The current treatment with atropine and AChE reactivators (oximes) is insufficient to prevent toxic effects, such as respiratory paralysis, after poisonings with various OPCs. Thus, alternative treatment options are required to increase treatment efficacy. Novel therapeutics, such as the bispyridinium non-oxime MB327, have been found to reestablish neuromuscular transmission by interacting directly with nAChR, probably via allosteric mechanisms. To rationally design new, more potent drugs addressing nAChR, knowledge of the binding mode of MB327 is fundamental. However, the binding pocket of MB327 has remained elusive. Here, we identify a new potential allosteric binding pocket (MB327-PAM-1) of MB327 located at the transition of the extracellular to the transmembrane region using blind docking experiments and molecular dynamics simulations. MB327 forms striking interactions with the receptor at this site. The interacting amino acids are highly conserved among different subunits and different species. Correspondingly, MB327 can interact with several nAChR subtypes from different species. We predict by rigidity analysis that MB327 exerts an allosteric effect on the orthosteric binding pocket and the transmembrane domain after binding to MB327-PAM-1. Furthermore, free ligand diffusion MD simulations reveal that MB327 also has an affinity to the orthosteric binding pocket, which agrees with recently published results that related bispyridinium compounds show inhibitory effects via the orthosteric binding site. The newly identified binding site allowed us to predict structural modifications of MB327, resulting in the more potent resensitizers PTM0062 and PTM0063.
000912181 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000912181 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000912181 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000912181 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912181 7001_ $$0P:(DE-HGF)0$$aGertzen, Christoph G. W.$$b1
000912181 7001_ $$0P:(DE-HGF)0$$aBernauer, Tamara$$b2
000912181 7001_ $$0P:(DE-HGF)0$$aHöfner, Georg$$b3
000912181 7001_ $$0P:(DE-HGF)0$$aNiessen, Karin V.$$b4
000912181 7001_ $$0P:(DE-HGF)0$$aSeeger, Thomas$$b5
000912181 7001_ $$0P:(DE-HGF)0$$aPaintner, Franz F.$$b6
000912181 7001_ $$0P:(DE-HGF)0$$aWanner, Klaus T.$$b7
000912181 7001_ $$0P:(DE-HGF)0$$aWorek, Franz$$b8
000912181 7001_ $$0P:(DE-HGF)0$$aThiermann, Horst$$b9
000912181 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b10$$eCorresponding author
000912181 773__ $$0PERI:(DE-600)1500784-4$$a10.1016/j.toxlet.2022.11.018$$gp. S0378427422018008$$p160-171$$tToxicology letters$$v373$$x0378-4274$$y2023
000912181 8564_ $$uhttps://juser.fz-juelich.de/record/912181/files/Paper_MB327_bindingsite_EJMC_revision_final.pdf$$yPublished on 2022-11-26. Available in OpenAccess from 2023-11-26.
000912181 909CO $$ooai:juser.fz-juelich.de:912181$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000912181 9141_ $$y2023
000912181 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000912181 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912181 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-11
000912181 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000912181 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000912181 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-23$$wger
000912181 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTOXICOL LETT : 2022$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000912181 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000912181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b10$$kFZJ
000912181 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000912181 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000912181 920__ $$lyes
000912181 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000912181 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000912181 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000912181 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x3
000912181 980__ $$ajournal
000912181 980__ $$aVDB
000912181 980__ $$aI:(DE-Juel1)NIC-20090406
000912181 980__ $$aI:(DE-Juel1)JSC-20090406
000912181 980__ $$aI:(DE-Juel1)IBI-7-20200312
000912181 980__ $$aI:(DE-Juel1)IBG-4-20200403
000912181 980__ $$aUNRESTRICTED
000912181 9801_ $$aFullTexts