000912234 001__ 912234 000912234 005__ 20221206131305.0 000912234 0247_ $$2Handle$$a2128/32941 000912234 037__ $$aFZJ-2022-05434 000912234 1001_ $$0P:(DE-Juel1)179447$$avan der Vlag, Michiel$$b0$$eCorresponding author$$ufzj 000912234 1112_ $$aAssociation of Scientific Studies of Consciousness Meeting$$cAmsterdam$$d2022-07-12 - 2022-07-15$$gASSC25$$wNetherlands 000912234 245__ $$aRateML: A Code Generation Tool for Brain Network Models 000912234 260__ $$c2022 000912234 3367_ $$033$$2EndNote$$aConference Paper 000912234 3367_ $$2BibTeX$$aINPROCEEDINGS 000912234 3367_ $$2DRIVER$$aconferenceObject 000912234 3367_ $$2ORCID$$aCONFERENCE_POSTER 000912234 3367_ $$2DataCite$$aOutput Types/Conference Poster 000912234 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1670247214_3005$$xAfter Call 000912234 520__ $$aIt is argued that the relation of contemporary theoretical approaches to consciousness to the neurophysiology of the brain, can best be studied via detailed whole-brain modeling[1]. Often neuroimaging modalities such as fMRI, EEG and PET are applied to relate activation of brain regions or brain structure with consciousness[1-3]. In order to contribute to the discussion on consciousness, The Virtual Brain[4] (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity, can be employed to relate brain structure to dynamics. In order to reduce workflow complexity for whole brain network models used by simulators such as TVB, a tool called RateML can be utilized. It enables scientist to generate models from a high level XML file containing constructs corresponding to aspects of the whole-brain model, abstracting the concern for the actual implementation. Its output is a Python model which can be used in the graphical interface of TVB and a model and simulator object for the Compute Unified Device Architecture (CUDA) parallel computing platform, enabling extreme parameter space exploration by making use of the highly parallel architecture of the Graphical Processing Unit (GPU). RateML has its foundation in Low Entropy Model Specification (LEMS)[5] which has been used to build NeuroML2. Nowadays, it is impossible to separate computational neuroscience from the study on consciousness, RateML makes the computational infrastructure accessible to scientists to make stronger and statistically significant claims about the brain. 000912234 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000912234 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1 000912234 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2 000912234 8564_ $$uhttps://juser.fz-juelich.de/record/912234/files/Poster.pdf$$yOpenAccess 000912234 909CO $$ooai:juser.fz-juelich.de:912234$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources 000912234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179447$$aForschungszentrum Jülich$$b0$$kFZJ 000912234 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000912234 9141_ $$y2022 000912234 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000912234 920__ $$lno 000912234 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000912234 9801_ $$aFullTexts 000912234 980__ $$aposter 000912234 980__ $$aVDB 000912234 980__ $$aUNRESTRICTED 000912234 980__ $$aI:(DE-Juel1)JSC-20090406