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INTRODUCTION/MOTIVATION

Understanding the relationship between structure and function in the brain is a highly

multidisciplinary  endeavour;  it  requires  scientists  from different  fields  to  develop and

explore hypotheses based on both experimental data and the theoretical considerations

from diverse scientific domains [1]. Because of this, simulation platforms have become

essential tools to understand different states of the brain and promise, in the future, to

provide  a  way  of  reproducing  enough  features  of  brain  activity  in  order  to  better

understand healthy brain states, diseases, aging, and development [2]. 

One  particularly  promising  approach  is  whole-brain  simulation  based  on  non-

invasive brain imaging techniques suitable for use in human studies [3]. Functional and

structural  imaging  modalities  including  Electroencephalography  (EEG),

Magnetoencephalography  (MEG),  Magnetic  Resonance  Imaging  (MRI),  and  functional

Magnetic Resonance Imaging (fMRI) allow researchers to capture characteristics of the

brain primarily at a mesoscopic scale. The brain activity measured by such methods can

be mathematically modelled and simulated using The Virtual Brain simulator [4]. 

One of  the  strengths  of  such  whole-scale  brain  simulation  is  the  possibility  of

personalization of  the model  for  a particular  subject  [5][6][7].  The basic approach for

personalising  the  simulated model  behaviour  entails  finding  the  best  fit  between the

numeric  solution  of  the  derivative  equations,  which  determine  the  behaviour  of  the

model,  and  the  patient-specific  functional  empirical  data  [8].  Consequently,  large

parameter exploration are frequently carried out at high performance computing (HPC)

centers. 

Translating  the  set  of  differential  equations  into  a  concrete  implementation  is

complex, as several factors can dramatically influence performance and correctness of

the simulation.



We  therefore  conclude  that  abstracting  the  modeling  from  the  computational

implementation,  such  that  model  descriptions  can  be  automatically  translated  into

correct and performant implementations  [9], would considerably aid these scientists to

exploit the possibilities of whole-brain simulation. 

METHODS

To this end, we have developed RateML, a modeling workflow tool that uncouples the

specification of Neural Mass Models (NMMs) and Brain Network Models (BNMs) from their

implementations  as  machine  code  for  specific  hardware.  It  is  based  on  the  existing

domain specific language ‘Low Entropy Model Specification’ (LEMS) [10], which allows the

user  to  enter  declarative  descriptions  of  model  components  in  a  concise  XML

representation. RateML enables users to generate brain models based on an XML format

in which the generic features of rate-based neuron models can be addressed, without

needing extensive knowledge of mathematical modelling or hardware implementation. In

addition  to  providing  code  generation  of  the  described  models  in  Python,  it  is  also

possible to generate CUDA [11] code in which variables of interest can be designated

with  a  range  for  parameter  exploration.  The  generated  Python  code  can  be  directly

executed within the TVB simulation framework, whereas the CUDA code has a separate

driver module which is also generated before execution. 

RESULTS

To chart  the simulators  behaviour,  three CUDA models are benchmarked,  namely the

Kuramoto [12], WongWang [13] and Epileptor [14], which have respectively 1, 2 and 6

state  variables.  The  benchmarks  are  ran  for  4  seconds  of  simulated  time,  40,000

simulation steps with dt = 0.1 ms and integrated with the Euler method. Parameters size

is  increased to  observe the  run-time behaviour  and memory scaling.  The benchmark

experiments are executed on the JuwelsBooster clusters equipped with A100 GPUs with

40 GB of High Bandwidth Memory 2 with a bandwidth of 1,555 GB/s.

Figure  1.  Memory  bandwidth  consumption  and  model  iterations  per  second  for  three  TVB

CUDAmodels when scaling the parameter space. Results indicate linear scaling when increasing the

parameterspace and that the application is memory bound.



From the result shown in figure 1 it can be concluded that the time it takes to

execute a model and the memory consumed scale linearly with the size of the parameter

space. The results also show at which the maximum number of parameters, the different

models can still be simulated. Even simulations with the largest possible parameter space

dimension execute under 65 seconds. The CUDA executions show, for these parameter

spaces, that they are memory bound. In theory, the parameter space for the Kuramoto,

which  has  a  single  state,  could  be  doubled  before  all  the  memory  of  the  GPU  is

consumed.

Figure 2. Performance comparison to the code-generated TVB Numba backend (CPU) on a single

CrayXC40 node (2*18 cores, 2.10GHz, 128GB RAM). 

Finally, for comparison we present the performance of the CPU Numba backend of

TVB using template generated code. For this we have configured the simulation with the

Montbrió [15] model driven by noise and a connectome of 68 nodes and delays induced

by a propagation speed of 2m/s. As this configuration is representative of recent resting-

state  studies  [16],  we  explored  two  simulation  lengths:  4000  iteration  step

microbenchmark and a longer experiment spanning several BOLD time points of 100,000

integration steps corresponding to 10s of simulated time. The benchmark was executed

on a single Cray XC40 node (Intel Xeon E5-2695 v4, 2*18 cores, 2.10GHz, 128GB RAM) of

the multicore partition located in Piz Daint. The results presented in Figure 2 show, that

the performance increases with the length of the simulation hinting at better amortization

of  the  simulation  initialization  overhead  and  better  data  locality.  Secondly,  the  peak

perfomance is reached already for small parameter space sizes. 

DISCUSSION

RateML enables the user to generate complex Python and CUDA neural mass models and

to do fast parameters sweeps on the GPU, with identical results as when done with TVB.

At the moment some of the variables within the LEMS components used in RateML have

been modified to fit specific functionality and match the TVB simulation strategy. Even



though at the moment models produced by RateML can not be directly ported to other

simulators which support LEMS and are able to simulate BNMs or NMMs, work is being

done in collaboration with the LEMS development community to fit all the requirements

and perform any required modifications to RateML or extensions to the standard.
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