000912248 001__ 912248
000912248 005__ 20231027114348.0
000912248 0247_ $$2doi$$a10.1002/pssa.202200619
000912248 0247_ $$2ISSN$$a0031-8965
000912248 0247_ $$2ISSN$$a1521-396X
000912248 0247_ $$2ISSN$$a1862-6300
000912248 0247_ $$2ISSN$$a1862-6319
000912248 0247_ $$2Handle$$a2128/33838
000912248 0247_ $$2WOS$$aWOS:000900664100001
000912248 037__ $$aFZJ-2022-05445
000912248 082__ $$a530
000912248 1001_ $$0P:(DE-HGF)0$$aPetrychuk, Mykhailo$$b0
000912248 245__ $$aTransformation in low‐frequency noise spectra in GaN HEMT in non‐equilibrium conditions
000912248 260__ $$aWeinheim$$bWiley-VCH$$c2023
000912248 3367_ $$2DRIVER$$aarticle
000912248 3367_ $$2DataCite$$aOutput Types/Journal article
000912248 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675166878_20680
000912248 3367_ $$2BibTeX$$aARTICLE
000912248 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912248 3367_ $$00$$2EndNote$$aJournal Article
000912248 520__ $$aIt is known that flicker noise is the most intriguing noise component because it can be found in any type of material, object, device, or system. Despite the struggle of scientists to find a mutual model for the 1/f flicker noise law, there is still a challenge to describe the law in many cases. Herein, the studies of two-level random telegraph signal (RTS) fluctuations analyzed for the state-of-the-art high-electron-mobility transistors (HEMTs), fabricated based on AlGaN/GaN heterostructures, are presented. It is revealed that the shape of the fluctuations can be used to describe the formation of a spectrum with γ = 1, 2, 3. The data demonstrate that the 1/f spectrum can be obtained as a result of the interactions of the carriers in parallel channels along the length of a system. Experimentally registered RTS fluctuations have a spectrum described by behavior. The data are in good agreement with the theoretically predicted pulsed shape, allowing the generation of a 1/f spectrum. Based on the data analysis and the theoretical description of the fluctuations, the origin of 1/f fluctuations in nonequilibrium conditions is explained by interactions resulting in correlations of carriers in two parallel channels as the common feature in the HEMT devices.
000912248 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000912248 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912248 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b1$$eCorresponding author$$ufzj
000912248 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.202200619$$gp. pssa.202200619$$n2$$p.202200619$$tPhysica status solidi / A$$v220$$x0031-8965$$y2023
000912248 8564_ $$uhttps://juser.fz-juelich.de/record/912248/files/Physica%20Status%20Solidi%20a%20-%202022%20-%20Petrychuk%20-%20Transformation%20in%20Low%E2%80%90Frequency%20Noise%20Spectra%20in%20GaN%20High%E2%80%90Electron%E2%80%90Mobility.pdf$$yOpenAccess
000912248 8767_ $$d2023-02-27$$eHybrid-OA$$jDEAL
000912248 909CO $$ooai:juser.fz-juelich.de:912248$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000912248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000912248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b1$$kFZJ
000912248 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000912248 9141_ $$y2023
000912248 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000912248 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912248 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000912248 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000912248 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912248 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000912248 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000912248 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912248 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000912248 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000912248 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2022$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000912248 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000912248 920__ $$lyes
000912248 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000912248 980__ $$ajournal
000912248 980__ $$aVDB
000912248 980__ $$aUNRESTRICTED
000912248 980__ $$aI:(DE-Juel1)IBI-3-20200312
000912248 980__ $$aAPC
000912248 9801_ $$aAPC
000912248 9801_ $$aFullTexts