001     912259
005     20230224084243.0
024 7 _ |a 10.1038/s41467-022-32797-w
|2 doi
024 7 _ |a 2128/33448
|2 Handle
024 7 _ |a 36104315
|2 pmid
024 7 _ |a WOS:000853935100020
|2 WOS
037 _ _ |a FZJ-2022-05456
082 _ _ |a 500
100 1 _ |a Antonschmidt, Leif
|0 0000-0001-9948-7493
|b 0
245 _ _ |a The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils
260 _ _ |a [London]
|c 2022
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673416118_26335
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aggregation of amyloidogenic proteins is a characteristic of multiple neurodegenerative diseases. Atomic resolution of small molecule binding to such pathological protein aggregates is of interest for the development of therapeutics and diagnostics. Here we investigate the interaction between α-synuclein fibrils and anle138b, a clinical drug candidate for disease modifying therapy in neurodegeneration and a promising scaffold for positron emission tomography tracer design. We used nuclear magnetic resonance spectroscopy and the cryogenic electron microscopy structure of α-synuclein fibrils grown in the presence of lipids to locate anle138b within a cavity formed between two β-strands. We explored and quantified multiple binding modes of the compound in detail using molecular dynamics simulations. Our results reveal stable polar interactions between anle138b and backbone moieties inside the tubular cavity of the fibrils. Such cavities are common in other fibril structures as well.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Matthes, Dirk
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dervişoğlu, Rıza
|0 0000-0003-0579-9088
|b 2
700 1 _ |a Frieg, Benedikt
|0 P:(DE-Juel1)172887
|b 3
700 1 _ |a Dienemann, Christian
|0 0000-0002-2172-5110
|b 4
700 1 _ |a Leonov, Andrei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nimerovsky, Evgeny
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sant, Vrinda
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ryazanov, Sergey
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Giese, Armin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schröder, Gunnar F.
|0 P:(DE-Juel1)132018
|b 10
700 1 _ |a Becker, Stefan
|0 0000-0003-2041-5740
|b 11
700 1 _ |a de Groot, Bert L.
|0 0000-0003-3570-3534
|b 12
|e Corresponding author
700 1 _ |a Griesinger, Christian
|0 0000-0002-1266-4344
|b 13
|e Corresponding author
700 1 _ |a Andreas, Loren B.
|0 0000-0003-3216-9065
|b 14
|e Corresponding author
773 _ _ |a 10.1038/s41467-022-32797-w
|g Vol. 13, no. 1, p. 5385
|0 PERI:(DE-600)2553671-0
|n 1
|p 5385
|t Nature Communications
|v 13
|y 2022
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/912259/files/The%20clinical%20drug%20candidate%20anle138b.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912259
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172887
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)132018
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21