000912260 001__ 912260
000912260 005__ 20230224084259.0
000912260 0247_ $$2doi$$a10.1038/s41557-022-01035-7
000912260 0247_ $$2ISSN$$a1755-4330
000912260 0247_ $$2ISSN$$a1755-4349
000912260 0247_ $$2Handle$$a2128/33449
000912260 0247_ $$2pmid$$a36138110
000912260 0247_ $$2WOS$$aWOS:000856606900001
000912260 037__ $$aFZJ-2022-05457
000912260 082__ $$a540
000912260 1001_ $$00000-0003-1700-9354$$aIbáñez de Opakua, Alain$$b0
000912260 245__ $$aMolecular interactions of FG nucleoporin repeats at high resolution
000912260 260__ $$aLondon$$bNature Publishing Group$$c2022
000912260 3367_ $$2DRIVER$$aarticle
000912260 3367_ $$2DataCite$$aOutput Types/Journal article
000912260 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673416175_25243
000912260 3367_ $$2BibTeX$$aARTICLE
000912260 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912260 3367_ $$00$$2EndNote$$aJournal Article
000912260 520__ $$aProteins that contain repeat phenylalanine-glycine (FG) residues phase separate into oncogenic transcription factor condensates in malignant leukaemias, form the permeability barrier of the nuclear pore complex and mislocalize in neurodegenerative diseases. Insights into the molecular interactions of FG-repeat nucleoporins have, however, remained largely elusive. Using a combination of NMR spectroscopy and cryoelectron microscopy, we have identified uniformly spaced segments of transient β-structure and a stable preformed α-helix recognized by messenger RNA export factors in the FG-repeat domain of human nucleoporin 98 (Nup98). In addition, we have determined at high resolution the molecular organization of reversible FG–FG interactions in amyloid fibrils formed by a highly aggregation-prone segment in Nup98. We have further demonstrated that amyloid-like aggregates of the FG-repeat domain of Nup98 have low stability and are reversible. Our results provide critical insights into the molecular interactions underlying the self-association and phase separation of FG-repeat nucleoporins in physiological and pathological cell activities.
000912260 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000912260 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912260 7001_ $$0P:(DE-Juel1)176479$$aGeraets, James$$b1
000912260 7001_ $$0P:(DE-Juel1)172887$$aFrieg, Benedikt$$b2
000912260 7001_ $$0P:(DE-HGF)0$$aDienemann, Christian$$b3
000912260 7001_ $$0P:(DE-HGF)0$$aSavastano, Adriana$$b4
000912260 7001_ $$0P:(DE-HGF)0$$aRankovic, Marija$$b5
000912260 7001_ $$00000-0002-5624-2477$$aCima-Omori, Maria-Sol$$b6
000912260 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar F.$$b7$$eCorresponding author
000912260 7001_ $$00000-0002-2536-6581$$aZweckstetter, Markus$$b8$$eCorresponding author
000912260 773__ $$0PERI:(DE-600)2464596-5$$a10.1038/s41557-022-01035-7$$gVol. 14, no. 11, p. 1278 - 1285$$n11$$p1278 - 1285$$tNature chemistry$$v14$$x1755-4330$$y2022
000912260 8564_ $$uhttps://juser.fz-juelich.de/record/912260/files/Molecular%20interactions%20of%20FG%20nucleoporin%20repeats%20at%20high%20resolution.pdf$$yOpenAccess
000912260 909CO $$ooai:juser.fz-juelich.de:912260$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000912260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176479$$aForschungszentrum Jülich$$b1$$kFZJ
000912260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172887$$aForschungszentrum Jülich$$b2$$kFZJ
000912260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b7$$kFZJ
000912260 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000912260 9141_ $$y2022
000912260 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912260 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000912260 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000912260 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT CHEM : 2021$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000912260 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT CHEM : 2021$$d2022-11-12
000912260 920__ $$lyes
000912260 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000912260 980__ $$ajournal
000912260 980__ $$aVDB
000912260 980__ $$aUNRESTRICTED
000912260 980__ $$aI:(DE-Juel1)IBI-7-20200312
000912260 9801_ $$aFullTexts