001     912304
005     20230123110755.0
024 7 _ |a 10.1209/0295-5075/ac440d
|2 doi
024 7 _ |a 0295-5075
|2 ISSN
024 7 _ |a 1286-4854
|2 ISSN
024 7 _ |a 2128/32949
|2 Handle
024 7 _ |a WOS:000761416700001
|2 WOS
037 _ _ |a FZJ-2022-05501
082 _ _ |a 530
100 1 _ |a Grassberger, Peter
|0 P:(DE-Juel1)136887
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Revisiting a low-dimensional model with short range interactions and mean field critical behavior
260 _ _ |a Les Ulis
|c 2022
|b EDP Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670310082_28734
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In all known local low-dimensional models, scaling at critical points deviates from mean-field behavior —with one possible exception. This exceptional model with "ordinary" behavior is an inherently non-equilibrium model studied some time ago by H.-M. Bröker and myself. In simulations, its 2-dimensional version suggested that two critical exponents were mean-field, while a third one showed very small deviations. Moreover, the numerics agreed almost perfectly with an explicit mean-field model. In the present paper we present simulations with much higher statistics, both for 2d and 3d. In both cases we find that the deviations of all critical exponents from their mean-field values are non-leading corrections, and that the scaling is precisely of mean-field type. As in the original paper, we propose that the mechanism for this is "confusion", a strong randomization of the phases of feedbacks that can occur in non-equilibrium systems.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1209/0295-5075/ac440d
|0 PERI:(DE-600)1465366-7
|p 26002
|t epl
|v 136
|y 2022
|x 0295-5075
856 4 _ |u https://juser.fz-juelich.de/record/912304/files/Grassberger_2021_EPL_136_26002.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/912304/files/2110.14380.pdf
909 C O |o oai:juser.fz-juelich.de:912304
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136887
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EPL-EUROPHYS LETT : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-13
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21