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In all local low-dimensional models, scaling at critical points deviates from mean field behavior
— with one possible exception. This exceptional model with “ordinary” behavior is an inherently
non-equilibrium model studied some time ago by H.-M. Broker and myself. In simulations, its 2-
dimensional version suggested that two critical exponents were mean-field, while a third one showed
very small deviations. Moreover, the numerics agreed almost perfectly with an explicit mean field
model. In the present paper we present simulations with much higher statistics, both for 2d and
3d. In both cases we find that the deviations of all critical exponents from their mean field values
are non-leading corrections, and that the scaling is precisely of mean field type. As in the original
paper, we propose that the mechanism for this is “confusion”, a strong randomization of the phases
of feed-backs that can occur in non-equilibrium systems.

Non-linear low-dimensional stochastic systems with
short range interactions tend to show anomalously large
fluctuations. These fluctuations then lead to “anoma-
lous” scaling laws which deviate from their mean field
behavior. This applies to virtually all sorts of sys-
tems: To rough surfaces (e.g. Kardar-Parisi-Zhang [I]
and quenched Edwards-Wilkinson [2] models), to self-
organized critical models like the Bak-Tang-Wiesenfeld
[3] and Manna [4] sand pile models and the Bak-Sneppen
evolution model [5], to heat conduction in 1-d systems
such as the Fermi-Pasta Ulam [6] and alternating mass
hard particle [7] systems, and — maybe most famously —
to second order phase transitions as e.g. in Ising, XY,
or Heisenberg models [§], in percolation [9], and in self-
avoiding walks [10].

The possibility of “normal”, i.e. mean field type be-
havior has been much discussed in 1-d heat conduction,
where “normal” behavior would correspond to the valid-
ity of Fourier’s law [IIHI7], but not in any of the other
types of phenomena. It is true that in some cases even
deviations from power law scaling have been observed
(as in the Drossel-Schwabl forest fire model [I8] [19]), but
normal (i.e. mean-field) scaling at critical points were
never reported — with one single exception. This excep-
tion is an old paper by H.-M. Broker and myself [20].
This paper was cited only 5 times within 26 years (ac-
cording to Google Scolar), which illustrates most clearly
that the concept of a low-dimensional local model with
mean field type scaling at a critical point was considered
as completely outlandish by the community.

The model studied in [20] was a modification of
Manna’s sandpile model (for a similar model, see [21]),
with enhanced stochasticity and with non-conservation
of ‘sand’. The latter is controlled by an explicit control
parameter, which changes it from being self-organized
critical into a model with a standard non-equilibrium
second-order (continuum) phase transition. As in most
such models, its critical behavior is characterized by three
independent exponents. Two of these were found in [20]

to be mean field like, while the third showed very small
deviations. Moreover, not only the exponents but also
the scaling functions were extremely close to those of
an explicit mean field model, namely to a version of the
model on a Bethe tree. We should add that this model
should, by standard arguments [21]), be in the universal-
ity class of the fixed-energy Manna sand pile.

The closeness to mean field suggested of course that
the deviations from it could be finite-size corrections,
but simulations at that time were unable to decide this
question. We thus decided to revisit the problem and to
perform much larger simulations with modern hardware.
The results presented below are quite unambiguous: It
seems that all deviations are indeed due to finite-size cor-
rections, both for the 2-dimensional version of the model
studied in [20] and for its generalization to 3 dimensions.

This model is defined on a d-dimensional hypercubic
lattice (generalizations to other types of lattices are obvi-
ous), and time is discrete. At each lattice site we have a
“spin” z;, which can take any non-negative integer value,
but only the values z; = 0 and z; = 1 are ”stable”. If
z; becomes > 1 during the evolution, it “topples”. The
toppling rule is

for the site which topples, and

2 { 2z +1 with probability p

Zj :  with probability 1—p (2)
for each of its 2d neighbors, with 0 < p < 1/d. Notice
that each neighbor j has the same chance p to get its spin
increased, independently of what happens at the other
neighbors. Thus the sum ), z; fluctuates (during each
toppling, it can change by any value between —2 and
2d — 2), but in the average each toppling event causes
>, #i to decrease by 2dp—2. The critical point is exactly
where this vanishes, p. = 1/d. For later use we define

e=1/d—p, and o = (z) [22].
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FIG. 1. Average avalanche sizes (number of topplings per
event) plotted against ¢, for (a) d = 2 (top panel) and (b) d =
3 (bottom panel). The horizontal lines indicate the theoretical
predictions.

As in the sandpile model, the dynamics actually con-
sists of the following rules:

(i) We start with a configuration where all sites are sta-
ble.

(ii) A site 4 is chosen randomly, and z; is increased by
one unit. In the following, we call this an “event”.

(iii) If at least one site is unstable, the above toppling
rule is applied immediately (i.e. without increasing the
time counter) and simultaneously at all unstable sites
[24]. After this, ¢ is increased by 1 unit. If some z’s are
still > 4 so that they have to topple again, then all these
topplings are also done simultaneously. After each such
round of topplings, t is again increased by 1. This is re-
peated until all sites are stable again, after which rule
(ii) is applied again.

As we have already said, this is very similar to the
model of [21I]. The main difference is that we increase
the neighboring ‘spins’ independently during a toppling,
which adds to the randomness of the process. We believe
that it is this enhanced degree of stochasticity which is
responsible for the very special features of the model.

Although we could also run the model for p > 1/2d, if
we would use open boundary conditions (as in the orig-
inal versions of sandpile models), we show here only re-
sults for periodic (more precisely, helical) boundary con-
ditions. In all simulations, sufficiently long transients
were discarded so that all measurements are for the sta-
tistically stationary state. The number of events were for
each pair of values (d, €) more than 6 x 108.

Since ), z; decreases in average by 2de during each
toppling, while it first is increased by 1 in each event, the
average number of topplings per event is just 1/(2de).
Verifying this (see Fig. 1) presents thus a stringent test
that stationarity had been reached.

This does not, however, test against finite size correc-
tions. But no such corrections whatsoever were seen, if
we changed the simulation volume between 32 x 32 and
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FIG. 2. Cumulative distributions of the number of topplings
per event, (P(z), upper curve) and of their durations (Q(z),
lower curve), for d = 2 and ¢ = 0.000025. Even though only
two curves seem to be visible, four curves are actually shown:
Each distribution is shown for L = 32 and for L = 32768,
where the simulation boxes have sizes L x L.
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FIG. 3. Spatial correlations between ‘spin’ values (or densi-
ties, in a sandpile terminology) distances r apart. Since all
correlations for all r > 0 are negative, we show a log-log plot
for —C(r) vs. r. The straight lines give rough power law fits,
but notice that deviations from these power laws are signif-
icant and rather erratic. As in Fig. 1 and in the following
figures, panel (a) is for d = 2, while (b) is for d = 3.

32768 x 32768 in 2 dimensions, and between 163 and 5123
in d = 3 (see Fig. 2). This complete absence of visible
finite size effects is very surprising (for many sandpile
models, finite size effects are huge, see e.g. [2]). It al-
lowed us to use rather modest lattice sizes: In d = 2,
most simulations were done with L = 256 or 512, and
in d = 3 we used mostly L = 128 and 256 — although
the largest simulated avalanches were huge in both cases,
and had ~ 10'! topplings. It is easily explained by the



smallness and short ranges of correlations. As seen from
Fig. 3, these correlations are negative both in d = 2 and
d =3, and

c(i—j) = (ziz;) — 0* ~ |li = jII7° ®3)

in both dimensions, which is an even faster decay than
in the Bak-Tang-Wiesenfeld sandpile model (where ¢(i —
J) ~ ||i — j||=* [26]). Notice that the absolute values of
the correlations are much smaller in d = 3 than in d = 2.
This is expected if the behavior is close to mean field,
because deviations from it should decrease with d.
Average stationary densities o versus e are shown in
Fig. 4. We also show there predictions from a mean field
model, following [20]. In this model, a site ‘remembers’
for the present time step that it had toppled, but ‘forgets’
it thereafter. Thus a site that had not toppled during the
present avalanche has density o. A toppling site which is
not at the root of an avalanche has thus 2d — 1 neighbors
with density o, while its ‘father’ (the site which made it
topple) has a different density ¢’. In the simplest ver-
sion, we also neglect the possibility that the father might
have changed after this toppling, which implies o' = 0,
in which case the problem is essentially that of percola-
tion on a Bethe lattice with coordination number 2d [9].
But we can also allow values ¢’ # 0, in which case the
model can still be solved exactly [20]. In any case we
expect o) < p. Let us denote by a = po and a’' = po’
the probabilities that a toppling (non-root) site will make
its neighbors topple, while the very first toppling of an
avalanche will make all its neighbors topple with prob-
ability a. The average number of topplings during an
event (whether it triggered an avalanche or not) is [20]

1+a—ad

(s(p)) = ol1+2day_(2da+a’—a)'] = 07—
=0
(4)

Since we know that (s(p)) = 1/(2de), we obtain

1 2a(a — a’'
L, =)

2 14+ @2d—1a—a"’ ¢=1/d-a/o (5)

This allows us to obtain p as a function of € for any fixed
ratio a’/a. From Fig. 4 we see that very good fits are
obtained in both dimensions with ¢’ = 0. While this is
indeed the best fit in d = 3, an even better fit is obtained
in d =2 with a/ ~ a3.

Finally, we show in Figs. 5 to 8 the (cumulative) distri-
butions P(s) of the number s of topplings per event and
Q(t) of the time durations t. We could make detailed
comparison with the mean field model as in [20], but we
prefer to just show that the scaling predictions

L U (e?s) (6)

P(s) = 7

and

Q) = 70(et) (7
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FIG. 4. Stationary densities (average spins), measured be-
tween events. Statistical errors are much smaller than the
data points. For d = 2 (panel(a)) we show also two mean
field predictions, one (the upper smooth curve) for a = 0, the
other for o' = 0.81a®. For d = 3 (panel (b)) we only show
the mean field curve for @’ = 0, as this gives already a nearly
perfect fit.
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FIG. 5. Log-log plots of the cumulative distributions of the
number of topplings per event. Here and in the following
plots, the curves are for € = €min, 2€min, 4€min, - - - €max. Sta-
tistical errors are significant only in the far right tails, as
indicated by the (very small) fluctuations. The similarity be-
tween the two sets of curves reflects the fact that both are
essentially those for the mean field model.



0.82 | € =0.000003125 (left-most curve) to @) 1
0.0032 (right-most curve)
08 |
O
o
Q 0.78
-
%]
0.76
0.74
0.7 | £=0.0000015625 (left-most curve) to (b) |
’ 0.0064 (right-most curve)
0.68 |

s? P(s)
o
[e2]
(o]

FIG. 6. Same data as in Fig.|5| but plotted as \/sP(s) against
€2s. According to Eq. , these curves should tend towards
straight horizontal curves for ¢ — 0. To see more clearly
whether this is true or not, we show the data on a strongly
blown up (non-logarithmic) y-scale.
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FIG. 7. Log-log plots of the cumulative distributions of the
durations ¢ of avalanches. Again, statistical errors are signif-
icant only in the far right tails, and the similarity between
the two sets of curves reflects again the fact that both are
essentially those for the mean field model.
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FIG. 8. Same data as in Fig. |7} but plotted as tQ(t) against
et. According to Eq. @, these curves should tend towards
straight horizontal curves for ¢ — 0. To see more clearly
whether this is true or not, we show the data on a strongly
blown up (non-logarithmic) y-scale.

are excellently fulfilled in the asymptotic region ¢ — 0.
For both we show (in Figs. 5 and 7) first the unmodified
distributions in their entire ranges, but since this is not
really significant we then plot (in Figs. 6 and 8) blow-ups
of the scaling parts for \/sP(s) versus €2n and for tQ(t)
versus et. In all four plots (for d = 2 and d = 3, and for
P and Q) we see clear deviations from scaling (i.e., none
of the curves are horizontal in the central regions), but in
all four cases these seem clearly to disappear for € — 0.
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FIG. 9. Log-linear plot of the average squared avalanche du-
rations in d = 3 versus e. For increased significance we show

(t?) instead of (¢?) itself. We see large corrections to scaling,
but for € — 0 the curve becomes horizontal as predicted by

Eq. @

In Fig. 8b we also see quite a substantial violation of



scaling for large values of ¢ (curves do not collapse there),
but a closer inspection shows that this also disappears for
€ — 0. This is also seen more clearly from Fig. 9, where
we show (t2) for d = 3. Eq.(7) implies that (t?) o« 1/e or

e(t?) = const, (8)

but we see that this only becomes true for extremely
small values of €. Basically the same happens in d = 2,
although the scaling violations there are much smaller
(data not shown). It is precisely the scaling violations
seen in Figs. 6,8, and 9 which were at the basis of claims
in [20] that mean field scaling is not exact, because at
that time we were unable to simulate at as small values
of € as in the present paper.

In summary, we have shown that the critical scaling in
the model of [20] is indeed precisely that of its mean field
version, both for d = 2 and d = 3. To our knowledge this
is the first and only model in low dimensions and with
short-range interactions where this was ever observed.
Indeed, mean field scaling usually does not occur in such
models, if they show detailed balance, i.e. if they describe
equilibrium phenomena, since feedback loops there tend
to have a definite sign. Take, e.g., the Ising model. Loops
contribute obviously with a positive sign in the ferromag-
netic Ising model, but also in the antiferromagnetic one
on bipartite lattices. The same is true for other mod-
els like self avoiding walks, the Heisenberg model, and
percolation. We are not aware of a proof that the same
holds for all equilibrium models, thus a search for mean
field behavior in equilibrium critical phenomena might
be worth while. In the present (non-equilibrium) model,
these arguments do not apply because multiple topplings
lead to ‘spin’ changes of either signs, and thus to cancella-
tions in the contribution of loops. As in [20], we propose
to call this phenomenon “confusion”. It can be viewed
as the first known instance where the basic concept of
the random phase approximation [27] 28] becomes exact,
and even that only at a critical point.
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