001     912324
005     20240712101016.0
024 7 _ |a 10.1175/BAMS-D-21-0012.1
|2 doi
024 7 _ |a 0003-0007
|2 ISSN
024 7 _ |a 1520-0477
|2 ISSN
024 7 _ |a 2128/32953
|2 Handle
024 7 _ |a WOS:000886646700005
|2 WOS
037 _ _ |a FZJ-2022-05516
082 _ _ |a 550
100 1 _ |a Voigt, Christiane
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Cleaner Skies during the COVID-19 Lockdown
260 _ _ |a Boston, Mass.
|c 2022
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670315666_2716
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During spring 2020, the COVID-19 pandemic caused massive reductions in emissions from industry and ground and airborne transportation. To explore the resulting atmospheric composition changes, we conducted the BLUESKY campaign with two research aircraft and measured trace gases, aerosols, and cloud properties from the boundary layer to the lower stratosphere. From 16 May to 9 June 2020, we performed 20 flights in the early COVID-19 lockdown phase over Europe and the Atlantic Ocean. We found up to 50% reductions in boundary layer nitrogen dioxide concentrations in urban areas from GOME-2B satellite data, along with carbon monoxide reductions in the pollution hot spots. We measured 20%–70% reductions in total reactive nitrogen, carbon monoxide, and fine mode aerosol concentration in profiles over German cities compared to a 10-yr dataset from passenger aircraft. The total aerosol mass was significantly reduced below 5 km altitude, and the organic aerosol fraction also aloft, indicative of decreased organic precursor gas emissions. The reduced aerosol optical thickness caused a perceptible shift in sky color toward the blue part of the spectrum (hence BLUESKY) and increased shortwave radiation at the surface. We find that the 80% decline in air traffic led to substantial reductions in nitrogen oxides at cruise altitudes, in contrail cover, and in resulting radiative forcing. The light extinction and depolarization by cirrus were also reduced in regions with substantially decreased air traffic. General circulation–chemistry model simulations indicate good agreement with the measurements when applying a reduced emission scenario. The comprehensive BLUESKY dataset documents the major impact of anthropogenic emissions on the atmospheric composition.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lelieveld, Jos
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schlager, Hans
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schneider, Johannes
|0 P:(DE-Juel1)130949
|b 3
700 1 _ |a Curtius, Joachim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meerkötter, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sauer, Daniel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bugliaro, Luca
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 8
|u fzj
700 1 _ |a Crowley, John N.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Erbertseder, Thilo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Groß, Silke
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hahn, Valerian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Li, Qiang
|0 P:(DE-Juel1)177066
|b 13
|u fzj
700 1 _ |a Mertens, Mariano
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pöhlker, Mira L.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Pozzer, Andrea
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Schumann, Ulrich
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Tomsche, Laura
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Williams, Jonathan
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Zahn, Andreas
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Andreae, Meinrat
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Borrmann, Stephan
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Bräuer, Tiziana
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Dörich, Raphael
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Dörnbrack, Andreas
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Edtbauer, Achim
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Ernle, Lisa
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Fischer, Horst
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Giez, Andreas
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Granzin, Manuel
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Grewe, Volker
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Harder, Hartwig
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Heinritzi, Martin
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Holanda, Bruna A.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Jöckel, Patrick
|0 P:(DE-Juel1)188765
|b 35
700 1 _ |a Kaiser, Katharina
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Krüger, Ovid O.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Lucke, Johannes
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Marsing, Andreas
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Martin, Anna
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Matthes, Sigrun
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Pöhlker, Christopher
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Pöschl, Ulrich
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Reifenberg, Simon
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Ringsdorf, Akima
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Scheibe, Monika
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Tadic, Ivan
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Zauner-Wieczorek, Marcel
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Henke, Rolf
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Rapp, Markus
|0 P:(DE-HGF)0
|b 50
773 _ _ |a 10.1175/BAMS-D-21-0012.1
|g Vol. 103, no. 8, p. E1796 - E1827
|0 PERI:(DE-600)2029396-3
|n 8
|p E1796 - E1827
|t Bulletin of the American Meteorological Society
|v 103
|y 2022
|x 0003-0007
856 4 _ |u https://juser.fz-juelich.de/record/912324/files/1520-0477-BAMS-D-21-0012.1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912324
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)177066
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b B AM METEOROL SOC : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b B AM METEOROL SOC : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21