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ABSTRACT

Scattered Light Imaging (SLI) is a novel approach for mi-
croscopically revealing the fibre architecture of unstained
brain sections. The measurements are obtained by illumi-
nating brain sections from different angles and measuring
the transmitted (scattered) light under normal incidence.
The evaluation of scattering profiles commonly relies on
a peak picking technique and feature extraction from the
peaks, which allows quantitative determination of parallel
and crossing in-plane nerve fibre directions for each image
pixel. However, the estimation of the 3D orientation of the
fibres cannot be assessed with the traditional methodology.
We propose an unsupervised learning approach using spher-
ical convolutions for estimating the 3D orientation of neural
fibres, resulting in a more detailed interpretation of the fibre
orientation distributions in the brain.

Index Terms— Human Brain, Fibre Architecture, Unsu-
pervised Learning, CNNs, Spherical Convolution.

1. INTRODUCTION

The nerve fibre architecture of the brain is a complex system
comprised of billions of linked neurons [1]. Understanding
the architecture of the nerve fibre network in the brain is es-
sential for explaining functions of the brain and can be uti-
lized for finding therapies for degenerative disorders [2].

In recent years, several imaging methods have been devel-
oped to disentangle the brain’s complex architecture, resolv-
ing the anatomical structure at multiple spatial resolutions.
Diffusion-weighted magnetic resonance imaging (DW-MRI)
is the most prominent technique since it may be used on both
in vivo and postmortem brains reaching millimetre scale in
vivo subjects and resolutions up to 100 µm in postmortem
samples [3]. However, DW-MRI resolution is not able to cap-
ture the structure of fibres with diameter ranging from 0.16
to 9 µm and an average of 1 µm [4]. Therefore, imaging
techniques are required to assess the fibre architecture at mi-
croscopic resolutions in postmortem brains. Among those,
3D Polarized Light Imaging (3D-PLI) [5] measures the three-

dimensional orientation of nerve fibres in histological brain
sections with in-plane resolutions of up to 1.3 µm, effectively
reconstructing the joint orientation of fibres in a volume frac-
tion. However, the exact computation of 3D orientations is
affected by partial volume effects.

To better capture the fibre architecture of complex struc-
tures, Scattered Light Imaging [6, 7, 8] has been successfully
used to reveal fibre crossings in brain tissues. Nevertheless,
to the best of our knowledge, light scattering pattern analysis
has not yet been exploited to obtain a complete description
of the 3D fibre orientation distribution function (fODF). For
instance, [7] analyses the patterns applying a peak picking
algorithm to the line profile generated by the integral along
the radial axis of the scattering pattern, neglecting the com-
plete structure of the scattering pattern and retrieving only the
in-plane orientation of the fibres.

Here, we aim to capture the complete 3D-fODF from the
scattering patterns. Since no groundtruth fODF is available
for this type of data, we draw inspiration from [9] to per-
form unsupervised learning to predict the fODF in each pixel
of the image. Since the scattering patterns cannot be recon-
structed from linear operations such as convolution in diffu-
sion MRI[10], we employ a response mixture model, which
allows us to compare the input signal with a reconstructed
model based on the estimated model fODF. We compare the
performance of the proposed method with the results obtained
by [11]. Our main contributions are:

1. We present a graph-based orientation distribution analysis
(GORDA), an unsupervised spherical convolutional net-
work, to reconstruct the fODF from light scattering pat-
terns without the need for groundtruth labels.

2. A representation of scattering patterns on a spherical sur-
face, enabling spherical convolutions, allowing to capture
the spherical nature of fODF.

3. A geometric model of the response of fibres at different
inclinations and rotation angles, using the superposition
characteristic to perform pattern mixture and reconstruct
the scattering patterns.
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Fig. 1: The proposed framework. (a) Measurement setup. The coordinates from the microscope with respect to the scattering
pattern (φ, θ) are used to interpolate the scattering pattern to the HEALPix HEALpix sphere [12]. The parameters of the
microscope are H = 13 cm and L = 40 cm, and rled = 1.8 mm (b) A Spherical U-Net is used to reconstruct the fODF
from the scattering pattern. The grid resolution of each sphere is given by the Ns = Nside parameter of HEALpix, (c) Real
spherical harmonics transformation compresses the resulting fODF. (d) Inverse spherical harmonic transformation translates
the compression effectively into smoothing the resulting fODF. The resulting sphere is unfolded and processed by a geometric
reconstruction model. The response of all the orientations in the fODF is then used inside a weighted mixture model to
reconstruct the complete scattering pattern. Finally, the obtained reconstruction is compared with the projected scattering
pattern to calculate Lr, and the smoothed fODF is used for the calculation of the sparsity Lr and non-negativity Ln loss.

2. METHODS

An overview of our framework is depicted in Fig.1. The con-
cept details and the design of each component of our frame-
work are described in the following points.

Unsupervised Learning. The development of the current
framework takes advantage of the Finite-difference time-
domain simulations of the brain’s nerve fibre architecture
developed by [13]. Since we do not have access to any
groundtruth or expert annotations for the measured scattering
patterns, simulations constitute a valuable tool for describing
their structure for different fibre populations. Nevertheless,
one pitfall of the simulations presented in [13] remains in
their complexity and expensive computation, which requires
approximately 8K cpu-hours for the simulation of a single
nerve fibre architecture on an HPC cluster. This makes it
theoretically impossible to run the simulation simultaneously
to training and increase the complexity to create a compre-
hensive database for all the combinations of nerve fibres.

To cope with this limitation, we develop a geometric pro-
jection of an ellipsoid that formulates an approximate model
of the response of the scattering patterns at different orien-
tations and inclinations for a single nerve fibre. Since [13, 6]
show the existence of a superposition property of the patterns,
we perform a mixture of all possible projections in a sphere
to generate a reconstruction of the input pattern. The recon-
structed pattern can be compared with the input measurement
to optimize our spherical CNN. Details of each component of
our framework are described as follows:

Preprocessing. The centre of the scattering patterns
varies between image pixels because each image pixel rep-

resents a different position in the sample and thus a different
position with respect to the centre of the LED (light-emitting
diode) display. Determining the centre of the scattering pat-
tern is crucial to convert plain scattering patterns to spherical
coordinates. To find the centre, we refine the method reported
in [7], which considers the pixel with maximum intensity as
the scattering pattern’s centroid. We modify their approach
by applying a Gaussian smoothing filter over the scattering
pattern before finding maximum intensity pixel. The filter
reduces the effect of noise in the scattering patterns.

Once the centre of the measurement (xc, yc) is found, we
perform a projection from the measurement space to a spher-
ical system. Since the fODF is a function in the sphere that
can be well modelled either as spherical harmonics (SH) or as
spherical functions, we take advantage of the spherical sam-
pling method HEALPix [12]. HEALPix provides a subdivi-
sion of a spherical surface in which each pixel covers the same
surface area as every other pixel.

To convert the scattering pattern, acquired with the mea-
surement setup presented in Fig. 1.a, to the spherical space,
an inverse gnomonic projection is applied. The projection re-
quires the pixel distance to the centre point defined as ∆x =
x − xc, and ∆y = y − yc, where x, y are the pixel coordi-
nates in the scattering pattern. The mapping from the mea-
surement to the sphere is calculated as φ = arctan(∆x

∆y ) and

θ = arctan( d
H

√
∆x2 + ∆y2). We interpolate the values

from the measurement sphere to the HEALPix sphere using
the angular distance between the surface of the spheres as de-
scribed in [14].

Spherical Convolutional Network. Our framework



employs the graph-based spherical convolution developed in
DeepSphere [15] as the basis of the spherical U-Net architec-
ture [16]. The main advantage of spherical convolution over
traditional convolution is that rotation invariance [17, 15], re-
ducing the need for intensive data augmentation. Further-
more, the convolutions of DeepSphere are computationally
efficient since they have a linear computational complexity
with respect to the number of pixels. They are adaptable
to signal analyses that partially cover the spherical surface,
which is the case in scatterometry patterns for which the max-
imum angle of incidence is θ = 60◦.

The spherical convolutional network is based on the
U-Net architecture [18], with operations defined on the
HEALPix sphere, allowing for down-sampling and up-sampling
the spherical grid resolution (Npix) with a number of pixels
Npix = 12N2

s , with Ns ∈ {i ∈ N0 | i mod 2 = 0} which
defines the number of divisions along the side of a base-
resolution. The setup enables capturing the response of the
signal in the whole sphere and reconstructing the fODF.

Scattering pattern reconstruction. To model inclina-
tion and rotation effects of the fibres in the scattering patterns,
we take advantage of the simulations presented in [13]. The
simulations show that the patterns rotate continuously with
changes in the azimuthal angles of the fibres. Nevertheless,
with fibre orientations switching out of plane due to increas-
ing inclination angles, a “C-shape” can be observed in the
patterns. This effect is similar to the one observed when pro-
jecting an ellipsoid to a plane, and the ellipsoid is rotated in
its azimuthal and zenith angles, keeping one of its co-vertices
fixed. To represent these rotations, we define an ellipsoid as
(x − xc)TRTΛR(x − xc) = 1, where x is the position of
each point in the ellipsoid, xc is the centre of the ellipsoid,
Λ is the diagonal matrix of its eigenvalues given by [α, 1, 1],
with α adjusting parameter the “thickness” of the pattern, and
R the rotation matrix calculated from the azimuthal φf and
zenith θf angles of the fibre as R = Ry(θf )Rz(φf ). Fig.
2 presents an overview of the proposed reconstruction model
for a single fibre.

Loss functions. The proposed model is trained with re-
spect to the characteristics of the scattering patterns and the
estimated fODF. First, we define a reconstruction loss Lr to
compare the whole input signal and the reconstructed scat-
tering pattern. We follow the loss definition of [19] using
a combination of L2 loss and the Pearson correlation coeffi-
cient (PCC). Such combination captures the element-wise
differences and the overall correlation between the input and
reconstructed scattering pattern. The reconstruction loss is is
defined as:

Lr = ‖S − Sr‖2 + λr(1− PCC(S, Sr)). (1)

Prior constraints are essential to regularize the training
process of an unsupervised setting. In the case of the estima-
tion of fODF, sparsity priors are commonly used to recover
the actual fibre orientation [20] since the number of direc-

Fig. 2: Representation of the sphere used for reconstructing
the scattering patterns, and its projection. The angles φf and
θf modify the orientation of the sphere in the space.

tions of interest in a pixel remains sparse. Our method is in
line with the sparsity regularisation presented in [9], using a
Cauchy distribution to regulate the sparsity of the fODF as:

Ls = λs

N∑
i=1

log

(
1 +

fODF2
i

2σ2
s

)
, (2)

where λs is the regularization coefficient and σ2
s controls the

sparsity level of the fODF. The fODF is a spherical signal in
the HEALPix sphere.

Another consideration of our method is that the de-
termined fibre orientation is constrained to be antipodal
symmetric using a real spherical harmonics transformation.
Nevertheless, applying this characteristic to the estimated
fODF produces the presence of negative coefficients. Since
the fODF must always be positive in the unit sphere, it is
necessary to constrain the non-negativity behaviour of the
fODF. We assess that with the use of an L2 regularisa-
tion over the non-positive values in the fODF defined as
LN = ‖fODFfODFi<0‖2 . Finally, the whole network can
be trained end to end using the total loss LT computed as
LT = Lr + Ls + LN .

3. RESULTS

Dataset. We tested the proposed approach using different
postmortem tissue samples. The same tissue samples were
used as in [6, 7]: Three 30 µm thin sections of human op-
tic tracts that were manually placed on top of each other to
obtain a model of three crossing nerve fibre bundles (sections
no. 32/33), cf. Table F1 in [6]. The optic tracts were extracted
from the optic chiasm of a human brain (female body donor,
74 years old, without known neurological/psychiatric disor-
ders) and cut along the fibre tracts of the visual pathway. Each
scattering pattern was obtained by illuminating 2× 2 LED in
a LED panel composed of 256 LEDs, producing 81× 81 pix-
els per pattern, providing a total of 19M SLI patterns for each
section. In order to evaluate this study, a sub-sample of 10K
patterns was randomly selected.

Training. The proposed unsupervised learning algorithm



Fig. 3: Three crossing sections of human optic tracts measured with scatterometry SLI. (A)Transmittance image. (B) fODF
obtained with GORDA superposed to its SLI measurement in a region of single fibres.(C-D) fODF obtained with GORDA
superposed to its SLI measurement in a region of crossing fibres. The fODF were visualized using MRVIEW [21].

was optimized using AdamW [22], with a learning rate of
0.01, batch size of 32. Convergence was reached within 10-15
epochs, as expected given the design of Deepsphere [15]. The
training process was performed on a single node of JURECA-
DC with one GPU (NVidia A100, 40GB). Our algorithm was
implemented on top of Pytorch lightning [23]. After training,
the reconstruction model was disabled, and only the spherical
U-Net was used to estimate fODF and further evaluate the
method.

Evaluation. We evaluate the performance of the pre-
dicted fODF with the results obtained by SLIX in Table 1.
We use the angular correlation coefficient (ACC), which
measures the degree to which two functions over a sphere
are correlated, and the Jensen-Shannon divergence (JSD)
which measures the distance between two probability dis-
tributions [24]. We perform a separate analysis for regions
containing single and crossing fibres in the optic tracts sec-
tion.

Table 1 shows a high correlation between GORDA and
SLIX (when applied to the polar integral of the scattering pat-
terns), which indicates that the results of our method can cap-
ture a similar fODF in the evaluated dataset. Fig 3 presents
a qualitative impression of the performance of GORDA in
the optic tracks sections. GORDA generates complete fODFs
from the SLI scattering patterns for different fibre populations
like single fibres as well as two and three crossing fibres.

4. DISCUSSION & CONCLUSION

We introduced GORDA, a new strategy to analyse SLI scat-
tering patterns based on an unsupervised spherical convolu-
tional network which provides a complete description of the

Table 1: Correlation and divergence scores for the compari-
son of GORDA with SLIX for regions with single and cross-
ing fibres. The label ↑ implies the higher the better and ↓
implies the lower the better.

Region dataset ACC ↑ JSD ↓
Parallel fibres optic tracts 0.62 0.147
Crossing fibres 0.61 0.131

fibre architecture. The calculated fODF is recovered without
the need of any manual annotation or supervision and can be
fully described on a spherical harmonics basis, which enables
further comparison with other methodologies that calculate
fODF in brain sections. We presented a geometric model that
enables the reconstruction of the scattering patterns by means
of the fODF. Our approach opens a gateway to estimate the
inclination of the reconstructed fODF from the SLI scattering
patterns.

Our experiments showed that the predicted fODF are ca-
pable of capturing different fibre mixtures, such as single fi-
bres and crossing fibres. The correspondence of the estimated
orientation was quantitatively compared with the analysis per-
formed with SLIX. Remaining differences between the two
methods result from (i) GORDA calculating a complete prob-
abilistic function for the fODF, while SLIX estimates the peak
orientation at each scattering pattern, and (ii) GORDA calcu-
lating the 3D orientation of the fibres, while SLIX detects the
in-plane orientation of the fibres.

In future work, we plan to perform an extensive evalua-
tion for the inclination estimation of the scattering patterns
compared with 3D-PLI scans; such comparison will enable to
improve the parameters of our reconstruction model. Further-
more, we foresee the utility to perform knowledge distillation
from SLIX in the way of pseudo labels that could improve the
overall performance of GORDA and improve the robustness
of the estimation of the fODF.
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